How Set-Valued Maps Pop Up in Control Theory

We describe four instances where set-valued maps intervene either as a tool to state the results or as a technical tool of the proof. The paper is composed of four rather independent sections: 1. Set-Valued Optimal Synthesis and Differential Inclusions 2. Viability Kernel 3. Nonsmooth Solutions to Hamilton-Jacobi-Bellman Equations 4. Interior and Boundary of Reachable Sets

[1]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[2]  Halina Frankowska,et al.  Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation , 1987, 26th IEEE Conference on Decision and Control.

[3]  Halina Frankowska The First Order Necessary Conditions for Nonsmooth Variational and Control Problems , 1984 .

[4]  André Marchaud Sur les champs de demi-droites et les équations différentielles du premier ordre , 1934 .

[5]  H. Frankowska,et al.  A measurable upper semicontinuous viability theorem for tubes , 1996 .

[6]  Jean-Pierre Aubin,et al.  L'ALGORITHME DES MONTAGNES RUSSES POUR L'OPTIMISATION GLOBALE , 1994 .

[7]  Noël Bonneuil,et al.  Viable populations in a prey–predator system , 1997 .

[8]  J. Bony Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés , 1969 .

[9]  Piermarco Cannarsa,et al.  Some characterizations of optimal trajectories in control theory , 1991 .

[10]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[11]  Halina Frankowska,et al.  Measurable Viability Theorems and the Hamilton-Jacobi-Bellman Equation , 1995 .

[12]  J. Aubin,et al.  Set-valued solutions to the Cauchy problem for hyperbolic systems of partial differential inclusions , 1997 .

[13]  H. Frankowska,et al.  CONJUGATE POINTS AND SHOCKS IN NONLINEAR OPTIMAL CONTROL , 1996 .

[14]  A. F. Filippov Classical Solutions of Differential Equations with Multi-Valued Right-Hand Side , 1967 .

[15]  A. Isidori,et al.  A frequency domain philosophy for nonlinear systems, with applications to stabilization and to adaptive control , 1984, The 23rd IEEE Conference on Decision and Control.

[16]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[17]  H. Frankowska,et al.  Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati , 1992 .

[18]  H. Frankowska,et al.  Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[19]  H. Frankowska,et al.  Viability Kernels of Differential Inclusions with Constraints: Algorithms and Applications , 1990 .

[20]  Smooth and Heavy Solutions to Control Problems , 1985 .

[21]  H. Frankowska Some inverse mapping theorems , 1990 .

[22]  E. Barron,et al.  Semicontinuous Viscosity Solutions For Hamilton–Jacobi Equations With Convex Hamiltonians , 1990 .

[23]  H. Frankowska Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations , 1993 .

[24]  H. Soner,et al.  On the Singularities of the Viscosity Solutions to Hamilton-Jacobi-Bellman Equations , 1985 .

[25]  Marc Quincampoix,et al.  Some algorithms for differential games with two players and one target , 1994 .

[26]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[27]  David L. Russell Calculus of Variations and Control Theory , 1976 .