Seltene autoinflammatorische Knochenerkrankungen

Zusammenfassung Autoinflammatorische Knochenerkrankungen sind gekennzeichnet durch eine entzündliche zelluläre Infiltration des Knochens, Osteoklastenaktivierung, Osteolyse und gesteigertes Knochenremodelling infolge einer aberranten Aktivierung des angeborenen Immunsystems. Der Knochenabbau infolge chronischer Osteomyelitis zeigt die enge Verknüpfung zwischen Immun- und Skelett system. Die Identifizierung von definierten molekularen Defekten bei verschiedenen Erkrankungen konnte bereits zu einem besseren Verständnis der komplexen Interaktion zwischen Knochen und Immunsystem beitragen. Die sporadisch auftretende chronische nichtinfektiöse Osteomyelitis stellt die am häufigsten vorkommende Erkrankung dar. Zu den seltenen monogenetischen autoinflammatorischen Erkrankungen zählen: IL-1- Rezeptorantagonist-Mangel, Majeed-Syndrom und Cherubism. Weitere der sogenannten Inflammasom- und auch Stoffwechsel-erkrankungen aufgrund von Enzymdefekten (Hypophosphatasie, hypertrophe Osteoarthropathie) beeinhalten eine signifikante inflammatorisch bedingte Knochenpathologie. Im folgenden Artikel werden diese seltenen Erkrankungen von den molekularen Pathologien bis hin zur klinischen Präsentation diskutiert. Ein besseres Verständnis der pathophysiologischen Grundlagen von autoinflammatorischen Knochenerkrankungen könnte zur Entwicklung weiterer gezielter Therapieansätze beitragen, wovon letztlich auch Patienten mit häufiger vorkommenden Knochenerkrankungen profitieren.

[1]  J. Millán,et al.  Ablation of Osteopontin Improves the Skeletal Phenotype of Phospho1−/− Mice , 2014, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[2]  T. Kallinich,et al.  Diagnostik und Therapie der nichtbakteriellen Osteitis , 2014, Monatsschrift Kinderheilkunde.

[3]  F. Jakob,et al.  Unexpected high intrafamilial phenotypic variability observed in hypophosphatasia , 2014, European Journal of Human Genetics.

[4]  A. Bloch-Zupan,et al.  Clinical utility gene card for: Hypophosphatasia – update 2013 , 2013, European Journal of Human Genetics.

[5]  S. Hofmann,et al.  Autoinflammatory bone disorders with special focus on chronic recurrent multifocal osteomyelitis (CRMO) , 2013, Pediatric Rheumatology.

[6]  M. Beer,et al.  Autoinflammatory bone disorders. , 2013, Clinical immunology.

[7]  R. Goldbach-Mansky,et al.  Monogenic autoinflammatory diseases: concept and clinical manifestations. , 2013, Clinical immunology.

[8]  B. Mentrup,et al.  Clinical Aspects of Hypophosphatasia: An Update , 2013, Clinical Reviews in Bone and Mineral Metabolism.

[9]  P. Ferguson,et al.  Efficacy of anti-IL-1 treatment in Majeed syndrome , 2012, Annals of the rheumatic diseases.

[10]  M. Beer,et al.  Diffusion-weighted MRI of bone marrow oedema, soft tissue oedema and synovitis in paediatric patients: feasibility and initial experience , 2012, Pediatric Rheumatology.

[11]  M. Beer,et al.  Comparison of magnetic resonance imaging and 99mTechnetium-labelled methylene diphosphonate bone scintigraphy in the initial assessment of chronic non-bacterial osteomyelitis of childhood and adolescents. , 2012, Clinical and experimental rheumatology.

[12]  B. Olsen,et al.  Cherubism: best clinical practice , 2012, Orphanet Journal of Rare Diseases.

[13]  Nick Bishop,et al.  Enzyme-replacement therapy in life-threatening hypophosphatasia. , 2012, The New England journal of medicine.

[14]  J. Balsinde,et al.  Lipin-2 Reduces Proinflammatory Signaling Induced by Saturated Fatty Acids in Macrophages* , 2012, The Journal of Biological Chemistry.

[15]  M. van Gijn,et al.  Mutation screening of the IL-1 receptor antagonist gene in chronic non-bacterial osteomyelitis of childhood and adolescence. , 2011, Clinical and experimental rheumatology.

[16]  K. Zerres,et al.  Primary hypertrophic osteoarthropathy with digital clubbing and palmoplantar hyperhidrosis caused by 15‐PGHD/HPGD loss‐of‐function mutations , 2011, Experimental dermatology.

[17]  R. Panush An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist , 2011 .

[18]  V. Pascual,et al.  Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review , 2010, Current genomics.

[19]  M. Beer,et al.  Chronic nonbacterial osteomyelitis in childhood: prospective follow-up during the first year of anti-inflammatory treatment , 2010, Arthritis research & therapy.

[20]  J. Hugot,et al.  Genetic Susceptibility Factors in a Cohort of 38 Patients with SAPHO Syndrome: A Study of PSTPIP2, NOD2, and LPIN2 Genes , 2010, The Journal of Rheumatology.

[21]  H. Müller-Hermelink,et al.  Association of chronic non-bacterial osteomyelitis with Crohn’s disease but not with CARD15 gene variants , 2010, Rheumatology International.

[22]  U. Broeckel,et al.  An autoinflammatory disease due to homozygous deletion of the IL1RN locus. , 2009, The New England journal of medicine.

[23]  H. Takayanagi,et al.  Osteoimmunology: Crosstalk Between the Immune and Bone Systems , 2009, Journal of Clinical Immunology.

[24]  Seth L Masters,et al.  Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). , 2009, Annual review of immunology.

[25]  P. Ferguson,et al.  Autoinflammatory bone disorders , 2007, Current opinion in rheumatology.

[26]  H. Takayanagi Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems , 2007, Nature Reviews Immunology.

[27]  M. Beer,et al.  Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy , 2007, BMC pediatrics.

[28]  J. Ramser,et al.  Classification of non-bacterial osteitis: retrospective study of clinical, immunological and genetic aspects in 89 patients. , 2007, Rheumatology.

[29]  M. Beer,et al.  Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia , 2006, Orphanet journal of rare diseases.

[30]  B. Dallapiccola,et al.  Pachydermoperiostosis: an update , 2005, Clinical genetics.

[31]  H. Müller-Hermelink,et al.  Chronic non-bacterial osteomyelitis in children , 2005, Annals of the rheumatic diseases.

[32]  A. Jurik Chronic recurrent multifocal osteomyelitis. , 2004, Seminars in musculoskeletal radiology.

[33]  E. Remmers,et al.  De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. , 2002, Arthritis and rheumatism.

[34]  M. Habal,et al.  Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism , 2001, Nature Genetics.

[35]  N. Almasri,et al.  On mice and men: An autosomal recessive syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia. , 2000, The Journal of pediatrics.

[36]  H. Seyberth,et al.  Treatment of childhood hypophosphatasia with nonsteroidal antiinflammatory drugs. , 1999, Bone.

[37]  H. Müller-Hermelink,et al.  Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. , 1999, Human pathology.

[38]  R. Krauspe,et al.  Chronic recurrent osteomyelitis with clavicular involvement in children: diagnostic value of different imaging techniques and therapy with non-steroidal anti-inflammatory drugs , 1998, European Journal of Pediatrics.