ZnO@MnO2 Core-Shell Nanofiber Cathodes for High Performance Asymmetric Supercapacitors.

Asymmetric supercapacitors (ASCs) with aqueous electrolyte medium have recently become the focus of increasing research. For high performance ASCs, selection of cathode materials play a crucial role, and core-shell nanostructures are found to be a good choice. We successfully synthesized, ZnO@MnO2 core-shell nanofibers (NFs) by modification of high-aspect-ratio-electrospun ZnO NFs hydrothermally with MnO2 nanoflakes. High conductivity of the ZnO NFs and the exceptionally high pseudocapacitive nature of MnO2 nanoflakes coating delivered a specific capacitance of 907 Fg-1 at 0.6 Ag-1 for the core-shell NFs. A simple and cost-effective ASC construction was demonstrated with ZnO@MnO2 NFs as a battery-type cathode material and a commercial-quality activated carbon as a capacitor-type anode material. The fabricated device functioned very well in a voltage window of 0-2.0 V, and a red-LED was illuminated using a single-celled fabricated ASC device. It was found to deliver a maximum energy density of 17 Whkg-1 and a power density of 6.5 kWkg-1 with capacitance retention of 94% and Coulombic efficiency of 100%. The novel architecture of the ZnO@MnO2 core-shell nanofibrous material implies the importance of using simple design of fiber-based electrode material by mere changes of core and shell counterparts.

[1]  Xing Sun,et al.  Three-dimensional ZnO@MnO2 core@shell nanostructures for electrochemical energy storage. , 2013, Chemical communications.

[2]  Haibo Lin,et al.  Electrodeposition of three-dimensional ZnO@MnO2 core–shell nanocables as high-performance electrode material for supercapacitors , 2015 .

[3]  C. Sow,et al.  Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries , 2012 .

[4]  Y. Gogotsi,et al.  Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. , 2015, Angewandte Chemie.

[5]  B. Geng,et al.  Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 core–shell electrode , 2015 .

[6]  S. Devaraj,et al.  Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties , 2008 .

[7]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[8]  Wang Zilong,et al.  High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide , 2014 .

[9]  N. Wu,et al.  Long-term electrochemical behaviors of manganese oxide aqueous electrochemical capacitor under reducing potentials☆ , 2010 .

[10]  M. El-Sayed,et al.  Probing the Charge Storage Mechanism of a Pseudocapacitive MnO2 Electrode Using in Operando Raman Spectroscopy , 2015 .

[11]  Elias K. Stefanakos,et al.  Synthesis, characterization, and applications of ZnO nanowires , 2012 .

[12]  Yuxin Zhang,et al.  Hierarchical ZnO@MnO2 Core-Shell Pillar Arrays on Ni Foam for Binder-Free Supercapacitor Electrodes , 2015 .

[13]  Makoto Ue,et al.  Electrochemical Properties of Organic Liquid Electrolytes Based on Quaternary Onium Salts for Electrical Double‐Layer Capacitors , 1994 .

[14]  D. Ohms,et al.  Noble metal-free catalysts for the hydrogen/oxygen recombination in sealed lead/acid batteries using immobilized electrolytes , 1992 .

[15]  A. Chandra,et al.  Supplementary Information Significant Performance Enhancement in Asymmetric Supercapacitors Based on Metal Oxides, Carbon Nanotubes and Neutral Aqueous Electrolyte , 2022 .

[16]  Yury Gogotsi,et al.  Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  Muhamed Shareef Kolathodi,et al.  Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors , 2015 .

[18]  Lei Zhang,et al.  A review of electrolyte materials and compositions for electrochemical supercapacitors. , 2015, Chemical Society reviews.

[19]  Xianzhong Sun,et al.  Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications , 2013 .

[20]  D. Reneker,et al.  Nanometre diameter fibres of polymer, produced by electrospinning , 1996 .

[21]  S. Mhaisalkar,et al.  Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes , 2010 .

[22]  G. Fang,et al.  Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode , 2014 .

[23]  Wenyao Li,et al.  Urchin-like MnO2 capped ZnO nanorods as high-rate and high-stability pseudocapacitor electrodes , 2015 .

[24]  Qingwen Li,et al.  Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. , 2013, ACS applied materials & interfaces.

[25]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[26]  Feng Luan,et al.  High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode. , 2013, Nanoscale.

[27]  Daniel Hofstetter,et al.  ZnO Devices and Applications: A Review of Current Status and Future Prospects , 2010, Proceedings of the IEEE.

[28]  Timothy S. Fisher,et al.  MnO2-coated graphitic petals for supercapacitor electrodes , 2013 .

[29]  Wei Li,et al.  Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors , 2015 .

[30]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[31]  B. Tell,et al.  Raman Effect in Zinc Oxide , 1966 .

[32]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[33]  Fei Li,et al.  MnO2-based nanostructures for high-performance supercapacitors , 2015 .

[34]  D. Dubal,et al.  Hybrid energy storage: the merging of battery and supercapacitor chemistries. , 2015, Chemical Society reviews.

[35]  Y. Tsuchiya,et al.  Thermal decomposition products of poly(vinyl alcohol) , 1969 .

[36]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[37]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[38]  Jin Guo,et al.  Mesoporous Transition Metal Oxides for Supercapacitors , 2015, Nanomaterials.

[39]  X. C. Liu,et al.  Rationally designed hierarchical MnO2-shell/ZnO-nanowire/carbon-fabric for high-performance supercapacitor electrodes , 2014 .

[40]  Zenan Yu,et al.  Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance , 2013, Advanced materials.

[41]  Ananthakumar Ramadoss,et al.  Hierarchically structured TiO2@MnO2 nanowall arrays as potential electrode material for high-performance supercapacitors , 2014 .

[42]  Qinglin Wu,et al.  Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers , 2015, Materials.

[43]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[44]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[45]  G. Stucky,et al.  High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte. , 2015, ACS applied materials & interfaces.

[46]  Lei Zhang,et al.  A review of electrode materials for electrochemical supercapacitors. , 2012, Chemical Society reviews.

[47]  Zhenan Bao,et al.  Hybrid nanostructured materials for high-performance electrochemical capacitors , 2013 .

[48]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[49]  Changzhong Chen,et al.  A Review on the Synthesis of Manganese Oxide Nanomaterials and Their Applications on Lithium-Ion Batteries , 2013 .

[50]  Alexander A. Balandin,et al.  Micro-Raman investigation of optical phonons in ZnO nanocrystals , 2005 .

[51]  Cuimei Zhao,et al.  A Review for Aqueous Electrochemical Supercapacitors , 2015, Front. Energy Res..

[52]  Li-Jun Wan,et al.  Nanocarbon networks for advanced rechargeable lithium batteries. , 2012, Accounts of chemical research.

[53]  E. Xie,et al.  Importance of polypyrrole in constructing 3D hierarchical carbon nanotube@MnO2 perfect core-shell nanostructures for high-performance flexible supercapacitors. , 2015, Nanoscale.

[54]  Yuxin Zhang,et al.  Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high-performance supercapacitors , 2016 .

[55]  Xiaolong Deng,et al.  Synthesis and property of spinel porous ZnMn 2 O 4 microspheres , 2015 .

[56]  P. Patil,et al.  Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor , 2015 .

[57]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .