The temporal logic of coalgebras via Galois algebras

This paper introduces a temporal logic for coalgebras. Nexttime and lasttime operators are defined for a coalgebra, acting on predicates on the state space. They give rise to what is called a Galois algebra. Galois algebras form models of temporal logics like Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). The mapping from coalgebras to Galois algebras turns out to be functorial, yielding indexed categorical structures. This construction gives many examples, for coalgebras of polynomial functors on sets. More generally, it will be shown how ‘fuzzy’ predicates on metric spaces, and predicates on presheaves, yield indexed Galois algebras, in basically the same coalgebraic manner.

[1]  Zohar Manna,et al.  Logics of Programs , 1981, Lecture Notes in Computer Science.

[2]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[3]  Hans-Jörg Schek,et al.  Object Orientation with Parallelism and Persistence , 1996 .

[4]  Amir Pnueli The Temporal Semantics of Concurrent Programs , 1981, Theor. Comput. Sci..

[5]  Bart Jacobs,et al.  Reasonong about Classess in Object-Oriented Languages: Logical Models and Tools , 1998, ESOP.

[6]  Martin Rö,et al.  From modal logic to terminal coalgebras , 2001, Theor. Comput. Sci..

[7]  R. Goldblatt Logics of Time and Computation , 1987 .

[8]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[9]  Bart Jacobs,et al.  Reasoning about Java classes: preliminary report , 1998, OOPSLA '98.

[10]  Robert E. Kent The Metric Closure Powerspace Construction , 1987, MFPS.

[11]  A. Tarski,et al.  Boolean Algebras with Operators , 1952 .

[12]  Alexander Kurz,et al.  Specifying Coalgebras with Modal Logic , 1998, CMCS.

[13]  David A. Schmidt,et al.  Mathematical Foundations of Programming Language Semantics , 1987, Lecture Notes in Computer Science.

[14]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[15]  H. Gumm Functors for Coalgebras , 2001 .

[16]  Burghard von Karger,et al.  Temporal algebra , 1998, Mathematical Structures in Computer Science.

[17]  David A. Schmidt,et al.  Calois Connections and Computer Science Applications , 1985, CTCS.

[18]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[19]  A. Pnueli The Temporal Semantics of Concurrent Programs , 1979, Theor. Comput. Sci..

[20]  Lawrence Charles Paulson,et al.  Isabelle: A Generic Theorem Prover , 1994 .

[21]  Bart Jacobs,et al.  Towards a Duality Result in Coalgebraic Modal Logic , 2000, CMCS.

[22]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.

[23]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[24]  S. Ghilardi,et al.  Modal and tense predicate logic: Models in presheaves and categorical conceptualization , 1988 .

[25]  Samson Abramsky,et al.  Category Theory and Computer Programming , 1986, Lecture Notes in Computer Science.

[26]  Martin Rößiger,et al.  Coalgebras and Modal Logic , 2000, CMCS.

[27]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[28]  Bart Jacobs,et al.  Categorical Logic and Type Theory , 2001, Studies in logic and the foundations of mathematics.

[29]  Lawrence S. Moss,et al.  Coalgebraic Logic , 1999, Ann. Pure Appl. Log..

[30]  Bart Jacobs,et al.  The Coalgebraic Class Specification Language CCSL , 2001, J. Univers. Comput. Sci..

[31]  Natarajan Shankar,et al.  Formal Verification for Fault-Tolerant Architectures: Prolegomena to the Design of PVS , 1995, IEEE Trans. Software Eng..

[32]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[33]  Bart Jacobs,et al.  Objects and Classes, Co-Algebraically , 1995, Object Orientation with Parallelism and Persistence.

[34]  Bart Jacobs Semantics of lambda-I and of other substructure lambda calculi , 1993, TLCA.

[35]  Bart Jacobs,et al.  Semantics of Weakening and Contraction , 1994, Ann. Pure Appl. Log..

[36]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[37]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[38]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[39]  Burghard von Karger Temporal algebra , 1998 .

[40]  Martin Rößiger Languages for Coalgebras on Datafunctors , 1999, CMCS.

[41]  Bart Jacobs,et al.  Invariants, Bisimulations and the Correctness of Coalgebraic Refinements , 1997, AMAST.

[42]  Cristina Sernadas,et al.  Object Specification Logic , 1995, J. Log. Comput..