High‐quality genome‐scale metabolic modelling of Pseudomonas putida highlights its broad metabolic capabilities

Summary Genome‐scale reconstructions of metabolism are computational species‐specific knowledge bases able to compute systemic metabolic properties. We present a comprehensive and validated reconstruction of the biotechnologically relevant bacterium Pseudomonas putida KT2440 that greatly expands computable predictions of its metabolic states. The reconstruction represents a significant reactome expansion over available reconstructed bacterial metabolic networks. Specifically, iJN1462 (i) incorporates several hundred additional genes and associated reactions resulting in new predictive capabilities, including new nutrients supporting growth; (ii) was validated by in vivo growth screens that included previously untested carbon (48) and nitrogen (41) sources; (iii) yielded gene essentiality predictions showing large accuracy when compared with a knock‐out library and Bar‐seq data; and (iv) allowed mapping of its network to 82 P. putida sequenced strains revealing functional core that reflect the large metabolic versatility of this species, including aromatic compounds derived from lignin. Thus, this study provides a thoroughly updated metabolic reconstruction and new computable phenotypes for P. putida, which can be leveraged as a first step toward understanding the pan metabolic capabilities of Pseudomonas.

[1]  Roger L. Chang,et al.  Network Context and Selection in the Evolution to Enzyme Specificity , 2012, Science.

[2]  J. Lam,et al.  Review: Lipopolysaccharide biosynthesis in Pseudomonas aeruginosa , 2009, Innate immunity.

[3]  Víctor de Lorenzo,et al.  Pseudomonas putida as a functional chassis for industrial biocatalysis: From native biochemistry to trans-metabolism. , 2018, Metabolic engineering.

[4]  B. Palsson,et al.  Genome-scale Reconstruction of Metabolic Network in Bacillus subtilis Based on High-throughput Phenotyping and Gene Essentiality Data* , 2007, Journal of Biological Chemistry.

[5]  Roger L. Chang,et al.  Structural Systems Biology Evaluation of Metabolic Thermotolerance in Escherichia coli , 2013, Science.

[6]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[7]  L. Blank,et al.  The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition‐related alterations , 2011, Microbial biotechnology.

[8]  V. Lorenzo,et al.  Biotechnological domestication of pseudomonads using synthetic biology , 2014, Nature Reviews Microbiology.

[9]  Jared T. Broddrick,et al.  Unique attributes of cyanobacterial metabolism revealed by improved genome-scale metabolic modeling and essential gene analysis , 2016, Proceedings of the National Academy of Sciences.

[10]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[11]  Jason A. Papin,et al.  Reconciliation of Genome-Scale Metabolic Reconstructions for Comparative Systems Analysis , 2011, PLoS Comput. Biol..

[12]  U. Sauer,et al.  Convergent Peripheral Pathways Catalyze Initial Glucose Catabolism in Pseudomonas putida: Genomic and Flux Analysis , 2007, Journal of bacteriology.

[13]  Young Cheol Kim,et al.  Comparative Genomics of Plant-Associated Pseudomonas spp.: Insights into Diversity and Inheritance of Traits Involved in Multitrophic Interactions , 2012, PLoS genetics.

[14]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[15]  M. de Pedro,et al.  Variability of peptidoglycan structural parameters in gram-negative bacteria. , 1995, FEMS microbiology letters.

[16]  M. A. Prieto,et al.  The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. , 2012, Environmental microbiology.

[17]  Bernhard O. Palsson,et al.  Genome-scale metabolic reconstructions of multiple Salmonella strains reveal serovar-specific metabolic traits , 2018, Nature Communications.

[18]  Stephan Thies,et al.  Pseudomonas putida—a versatile host for the production of natural products , 2015, Applied Microbiology and Biotechnology.

[19]  J. Vivanco,et al.  Isolation and characterization of lignin‐degrading bacteria from rainforest soils , 2013, Biotechnology and bioengineering.

[20]  P. de Waard,et al.  Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkanoates). Study of beta-oxidation in Pseudomonas putida. , 1993, The Journal of biological chemistry.

[21]  M. Silby,et al.  Pseudomonas genomes: diverse and adaptable. , 2011, FEMS microbiology reviews.

[22]  Robert E W Hancock,et al.  Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. , 2013, Pathogens and disease.

[23]  Adam M. Feist,et al.  iML1515, a knowledgebase that computes Escherichia coli traits , 2017, Nature Biotechnology.

[24]  C. Wittmann,et al.  Robustness and Plasticity of Metabolic Pathway Flux among Uropathogenic Isolates of Pseudomonas aeruginosa , 2014, PloS one.

[25]  Christoph Wittmann,et al.  From lignin to nylon: Cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. , 2018, Metabolic engineering.

[26]  Steffen Klamt,et al.  Memote: A community driven effort towards a standardized genome-scale metabolic model test suite , 2018, bioRxiv.

[27]  Marco Fondi,et al.  Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity , 2016, Proceedings of the National Academy of Sciences.

[28]  Sang Yup Lee,et al.  In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. , 2010, Biotechnology journal.

[29]  Lars M. Blank,et al.  Response of Pseudomonas putida KT2440 to Increased NADH and ATP Demand , 2011, Applied and Environmental Microbiology.

[30]  Mathias Schäfer,et al.  Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440 , 2009, BioMetals.

[31]  Christopher W. Johnson,et al.  Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440 , 2017, Metabolic engineering communications.

[32]  William A. Sharpless,et al.  Massively Parallel Fitness Profiling Reveals Multiple Novel Enzymes in Pseudomonas putida Lysine Metabolism , 2019, mBio.

[33]  Joshua A. Lerman,et al.  Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments , 2013, Proceedings of the National Academy of Sciences.

[34]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[35]  I. Goryanin,et al.  Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models , 2017, PloS one.

[36]  E. Hardiman,et al.  Pathways for degradation of lignin in bacteria and fungi. , 2011, Natural product reports.

[37]  L. Blank,et al.  Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase , 2008, The FEBS journal.

[38]  B. Palsson,et al.  Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. , 2003, Omics : a journal of integrative biology.

[39]  Chulhwan Park,et al.  Optimization for biodegradation of 2,4,6-trinitrotoluene (TNT) by Pseudomonas putida. , 2003, Journal of bioscience and bioengineering.

[40]  C. Morris,et al.  The life history of Pseudomonas syringae: linking agriculture to earth system processes. , 2013, Annual review of phytopathology.

[41]  N. Wierckx,et al.  Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization. , 2018, Metabolic engineering.

[42]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[43]  J. García,et al.  A Genomic View of the Catabolism of Aromatic Compounds in Pseudomonas , 2010 .

[44]  Fangfang Xia,et al.  Building the repertoire of dispensable chromosome regions in Bacillus subtilis entails major refinement of cognate large-scale metabolic model , 2012, Nucleic acids research.

[45]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[46]  M. Schurr,et al.  Iron-Regulated Expression of Alginate Production, Mucoid Phenotype, and Biofilm Formation by Pseudomonas aeruginosa , 2014, mBio.

[47]  J. Ramos,et al.  Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library. , 2010, Environmental microbiology.

[48]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[49]  J. Ramos,et al.  Cell envelope mutants of Pseudomonas putida: physiological characterization and analysis of their ability to survive in soil. , 1999, Environmental microbiology.

[50]  J. Ramos,et al.  Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida , 2010, FEMS microbiology reviews.

[51]  A. Bull,et al.  The Growth of Pseudomonas putida on Chlorinated Aliphatic Acids and its Dehalogenase Activity , 1979 .

[52]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[53]  J. Ramos,et al.  Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. , 2013, Environmental microbiology.

[54]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[55]  R. Sederoff,et al.  Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants) , 1996, Plant physiology.

[56]  Ruben G. A. van Heck,et al.  The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis. , 2016, Environmental microbiology.

[57]  U. Sauer,et al.  Regulatory Tasks of the Phosphoenolpyruvate-Phosphotransferase System of Pseudomonas putida in Central Carbon Metabolism , 2012, mBio.

[58]  Bernhard O. Palsson,et al.  Optimizing genome-scale network reconstructions , 2014, Nature Biotechnology.

[59]  B. Palsson,et al.  Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis , 2012, Proceedings of the National Academy of Sciences.

[60]  Adam P Arkin,et al.  A metabolic pathway for catabolizing levulinic acid in bacteria , 2017, Nature Microbiology.

[61]  Michel Tenenhaus,et al.  An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data , 1985 .

[62]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[63]  T. Donohue,et al.  Combining Genome-Scale Experimental and Computational Methods To Identify Essential Genes in Rhodobacter sphaeroides , 2017, mSystems.

[64]  A. Arkin,et al.  Oxidative Pathways of Deoxyribose and Deoxyribonate Catabolism , 2018, mSystems.

[65]  Christopher W. Johnson,et al.  Lignin valorization through integrated biological funneling and chemical catalysis , 2014, Proceedings of the National Academy of Sciences.

[66]  P. Cornelis Iron uptake and metabolism in pseudomonads , 2010, Applied Microbiology and Biotechnology.

[67]  J. Ramos,et al.  Analysis of the core genome and pangenome of Pseudomonas putida. , 2016, Environmental microbiology.

[68]  C. Wittmann,et al.  Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition , 2013, BMC Biotechnology.