How complicated must an optical component be?

We analyze how complicated a linear optical component has to be if it is to perform one of a range of functions. Specifically, we devise an approach to evaluating the number of real parameters that must be specified in the device design or fabrication, based on the singular value decomposition of the linear operator that describes the device. This approach can be used for essentially any linear device, including space-, frequency-, or time-dependent systems, in optics, or in other linear wave problems. We analyze examples including spatial mode converters and various classes of wavelength demultiplexers. We consider limits on the functions that can be performed by simple optical devices, such as thin lenses, mirrors, gratings, modulators, and fixed optical filters, and discuss the potential for greater functionalities using modern nanophotonics.

[1]  Peter M Krummrich,et al.  Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing. , 2011, Optics express.

[2]  David A. B. Miller,et al.  Fundamental limit for optical components , 2007 .

[3]  A. Gnauck,et al.  Mode-Division Multiplexing Over 96 km of Few-Mode Fiber Using Coherent 6 $\,\times\,$6 MIMO Processing , 2012, Journal of Lightwave Technology.

[4]  Communication modes in large-aperture approximation. , 2007, Optics letters.

[5]  Joseph Shamir,et al.  Synthesis of three-dimensional light fields and applications , 2002, Proc. IEEE.

[6]  David A B Miller,et al.  Relationship between the superprism effect in one-dimensional photonic crystals and spatial dispersion in nonperiodic thin-film stacks. , 2005, Optics letters.

[7]  J R Leger,et al.  Coherent laser addition using binary phase gratings. , 1987, Applied optics.

[8]  Shanhui Fan,et al.  Demonstration of systematic photonic crystal device design and optimization by low-rank adjustments: an extremely compact mode separator. , 2005, Optics letters.

[9]  J. Goodman Introduction to Fourier optics , 1969 .

[10]  Jochen Trumpf,et al.  Degrees of Freedom of a Communication Channel: Using DOF Singular Values , 2010, IEEE Transactions on Information Theory.

[11]  Masaya Notomi,et al.  Superprism Phenomena in Photonic Crystals , 1998 .

[12]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[13]  Shanhui Fan,et al.  Design methodology for compact photonic-crystal-based wavelength division multiplexers. , 2011, Optics letters.

[14]  Miller,et al.  Electromagnetic degrees of freedom of an optical system , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  David A B Miller,et al.  Multilayer thin-film structures with high spatial dispersion. , 2003, Applied optics.

[16]  Byung-Kwan Yu,et al.  Factors to be Considered in Bulk Heterojunction Polymer Solar Cells Fabricated by the Spray Process , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Ali Adibi,et al.  Systematic design of superprism-based photonic crystal demultiplexers , 2005, IEEE Journal on Selected Areas in Communications.

[18]  D. Miller,et al.  Routing and photodetection in subwavelength plasmonic slot waveguides , 2012 .

[19]  Nikolay I Zheludev,et al.  The Road Ahead for Metamaterials , 2010, Science.

[20]  David A B Miller,et al.  Fundamental limit to linear one-dimensional slow light structures. , 2007, Physical review letters.

[21]  P. Martinsson,et al.  Limits of diffractive optics by communication modes , 2003 .

[22]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[23]  Ning-Ning Feng,et al.  Metal–Dielectric Slot-Waveguide Structures for the Propagation of Surface Plasmon Polaritons at 1.55 $\mu{\hbox {m}}$ , 2007, IEEE Journal of Quantum Electronics.

[24]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[25]  A. M. Weinera Femtosecond pulse shaping using spatial light modulators , 2000 .

[26]  Ting Wang,et al.  100G and Beyond Transmission Technologies for Evolving Optical Networks and Relevant Physical-Layer Issues , 2012, Proceedings of the IEEE.

[27]  R. Zengerle,et al.  Light Propagation in Singly and Doubly Periodic Planar Waveguides , 1987 .

[28]  Takuo Tanemura,et al.  Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler. , 2011, Nano letters.

[29]  R. Chen,et al.  Design and Analysis of CMOS-Controlled Tunable Photodetectors for Multiwavelength Discrimination , 2009, Journal of Lightwave Technology.

[30]  D. Miller,et al.  Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths. , 2000, Applied optics.

[31]  A Yariv,et al.  Optical data storage using orthogonal wavelength multiplexed volume holograms. , 1992, Optics letters.

[32]  K. Saraswat,et al.  Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .

[33]  D. Miller,et al.  Self-aligning universal beam coupler. , 2013, Optics express.

[34]  V. Shalaev Optical negative-index metamaterials , 2007 .

[35]  Zongfu Yu,et al.  Integrated Nonmagnetic Optical Isolators Based on Photonic Transitions $^{\ast}$ , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  A. Kildishev,et al.  Transformation optics and metamaterials , 2011 .

[37]  Martin Vetterli,et al.  On Sampling and Coding for Distributed Acoustic Sensing , 2012, IEEE Transactions on Information Theory.

[38]  G. Veronis,et al.  Modes of Subwavelength Plasmonic Slot Waveguides , 2007, Journal of Lightwave Technology.

[39]  J. Wallace,et al.  Capacity of the Continuous-Space Electromagnetic Channel , 2008, IEEE Transactions on Antennas and Propagation.

[40]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[41]  R.S. Tucker,et al.  Slow-light optical buffers: capabilities and fundamental limitations , 2005, Journal of Lightwave Technology.

[42]  Sergei S. Orlov,et al.  Holographic data storage systems , 1993, Proceedings of the IEEE.

[43]  Nicolas K Fontaine,et al.  Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices. , 2012, Optics express.

[44]  H. Dammann,et al.  High-efficiency in-line multiple imaging by means of multiple phase holograms , 1971 .

[45]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[46]  B Zhu,et al.  112-Tb/s space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber. , 2011, Optics express.

[47]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[48]  David A. B. Miller,et al.  Self-configuring universal linear optical component [Invited] , 2013, 1303.4602.

[49]  D.A.B. Miller,et al.  MSM-based integrated CMOS wavelength-tunable optical receiver , 2005, IEEE Photonics Technology Letters.

[50]  David A B Miller,et al.  Limits on the performance of dispersive thin-film stacks. , 2005, Applied optics.

[51]  Andrew Forbes,et al.  Robust interferometer for the routing of light beams carrying orbital angular momentum , 2011 .

[52]  J. Shamir,et al.  Synthesis of three-dimensional light fields and applications [Prolog] , 2002, Proceedings of the IEEE.

[53]  Chen Sun,et al.  Addressing link-level design tradeoffs for integrated photonic interconnects , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[54]  David A B Miller All linear optical devices are mode converters. , 2012, Optics express.

[55]  E. R. Thoen,et al.  Ultra-compact Si-SiO2 microring resonator optical channel dropping filters , 1998, IEEE Photonics Technology Letters.

[56]  L. Novotný,et al.  Antennas for light , 2011 .