ATOMIC DATA AND SPECTRAL MODEL FOR Fe II
暂无分享,去创建一个
G. Ferland | P. Quinet | C. Mendoza | T. Kallman | M. Bautista | C. Ballance | V. Fivet
[1] A. Hibbert,et al. Radiative transition rates for the forbidden lines in Fe II , 2011 .
[2] N. R. Badnell,et al. A Breit-Pauli distorted wave implementation for autostructure , 2011, Comput. Phys. Commun..
[3] K. Lodders,et al. The abundance of iron-peak elements and the dust composition in η Carinae: manganese , 2011 .
[4] K. Korista,et al. THE QUASAR OUTFLOW CONTRIBUTION TO AGN FEEDBACK: VLT MEASUREMENTS OF SDSS J0318-0600 , 2009, 0911.3896.
[5] C. Ramsbottom,et al. ELECTRON-IMPACT EXCITATION OF Ni ii: EFFECTIVE COLLISION STRENGTHS FOR OPTICALLY ALLOWED FINE-STRUCTURE TRANSITIONS , 2009 .
[6] N. Badnell,et al. Radiative transition rates and collision strengths for Si II , 2009, 0910.5425.
[7] J. Gurell,et al. The FERRUM project: transition probabilities for forbidden lines in [Fe II] and experimental metastable lifetimes , 2009, 0910.0699.
[8] M. Pindzola,et al. Electron-impact ionization of ground and metastable neon , 2009 .
[9] A. Hibbert,et al. Electric quadrupole and magnetic dipole transitions among 3d6 levels of Fe III , 2009 .
[10] J. Maza,et al. Ultraviolet Fe ii emission in z∼ 2 quasars , 2009, 0902.2057.
[11] M. Bautista,et al. Properties of the ionized gas in HH 202 – II. Results from echelle spectrophotometry with Ultraviolet Visual Echelle Spectrograph , 2009, 0901.4311.
[12] M. Bautista. Electronic correlations and polarizability of the Thomas–Fermi–Dirac–Amaldi potential: applications to the singly ionized iron-peak species , 2008 .
[13] H. Rix,et al. Black Hole Masses and Enrichment of z ~ 6 SDSS Quasars , 2007, 0707.1662.
[14] D. C. Griffin,et al. Relativistic radiatively damped R-matrix calculation of the electron-impact excitation of W46+ , 2006 .
[15] R. Rubin,et al. The [Fe IV] Discrepancy: Constraining the Iron Abundances in Nebulae , 2005, astro-ph/0504131.
[16] N. Badnell,et al. Electron-impact excitation of Xe26+ and its resultant spectral signature , 2004 .
[17] C. Mendoza,et al. K-Shell Photoabsorption of Oxygen Ions , 2004, astro-ph/0411374.
[18] J. Baldwin,et al. The Origin of Fe II Emission in Active Galactic Nuclei , 2004 .
[19] D. C. Griffin,et al. Electron-impact excitation of neon: a pseudo-state convergence study , 2004 .
[20] M. Bautista. Atomic data from the iron project - LV. Electron impact excitation of Ni II , 2004 .
[21] J. Baldwin,et al. The Origin of Fe II Emission in AGN , 2004, astro-ph/0407404.
[22] C. Mendoza,et al. Modeling of Iron K Lines: Radiative and Auger Decay Data for Fe II-Fe IX , 2003, astro-ph/0306321.
[23] R. Blandford,et al. Two‐dimensional adiabatic flows on to a black hole – I. Fluid accretion , 2003, astro-ph/0306184.
[24] D. C. Griffin,et al. An R-matrix with pseudo states calculation of electron-impact excitation in Ar , 2003 .
[25] C. Noble,et al. Electron impact excitation of Fe III : forbidden transitions , 2002 .
[26] D. C. Griffin,et al. Electron-impact excitation of Ne5+ , 2001 .
[27] B. Wilkes,et al. An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.
[28] J. Baldwin,et al. Continuum Pumping of [Fe II] in the Orion Nebula , 2000 .
[29] S. Collin,et al. The Fe II problem in NLS1s , 2000, astro-ph/0005153.
[30] D. C. Griffin,et al. R -matrix electron-impact excitation cross sections in intermediate coupling: an MQDT transformation approach , 1998 .
[31] Manuel A. Bautista,et al. Ionization Structure and Spectra of Iron in Gaseous Nebulae , 1997, astro-ph/9710073.
[32] Buell T. Jannuzi,et al. The Ultraviolet Properties of the Narrow-Line Quasar I Zw 1 , 1997, astro-ph/9706264.
[33] Nigel R. Badnell,et al. On the effects of the two-body non-fine-structure operators of the Breit - Pauli Hamiltonian , 1997 .
[34] P. Quinet,et al. Atomic data from the IRON Project. XIX. Radiative transition probabilities for forbidden lines in Fe II , 1996 .
[35] Anil K. Pradhan,et al. Atomic data from the Iron Project. XVII. Radiative transition probabilities for dipole allowed and forbidden transitions in Fe III , 1996 .
[36] P. Quinet. Transition probabilities for forbidden lines of Fe III , 1996 .
[37] I. P. Grant,et al. GRASP92: a package for large-scale relativistic atomic structure calculations , 1996, Comput. Phys. Commun..
[38] K. Berrington,et al. RMATRX1: Belfast atomic R-matrix codes , 1995 .
[39] F. A. Parpia,et al. GRASP: A general-purpose relativistic atomic structure program , 1989 .
[40] N. Badnell. Dielectronic recombination of Fe22+ and Fe21+ , 1986 .
[41] R. D. Cowan,et al. The Theory of Atomic Structure and Spectra , 1981 .
[42] R. I. Karaziya. Excited electron orbit collapse and atomic spectra , 1981 .
[43] B. J. McKenzie,et al. The transverse electron-electron interaction in atomic structure calculations , 1980 .
[44] A Burgess,et al. On the Bethe approximation , 1978 .
[45] W. Eissner,et al. Techniques for the calculation of atomic structures and radiative data including relativistic corrections , 1974 .
[46] A. Burgess. Coulomb integrals: tables and sum rules , 1974 .
[47] H. Nussbaumer,et al. A programme for calculating atomic structures , 1969 .
[48] G. Racah. L(L+1)Correction in the Spectra of the Iron Group , 1952 .
[49] R. E. Trees. Term Values in the3d54sConfiguration of Fe III , 1951 .
[50] R. E. Trees. Configuration Interaction in Mn II , 1951 .
[51] A. Hibbert,et al. Electron collisions with Fe-peak elements: Forbidden transitions between the low lying valence states 3d6, 3d54s, and 3d54p of Fe III , 2007 .
[52] S. Johansson,et al. The FERRUM Project: Experimental transition probabilities of (Fe II) and astrophysical applications , 2003 .
[53] Claudio Mendoza,et al. A Complete Set of Radiative and Auger Rates for K-vacancy States in Fe XVIII-Fe XXV , 2003 .
[54] Karen J. Olsen,et al. NIST Atomic Spectra Database (version 2.0) , 1999 .
[55] I. P. Grant,et al. A program to calculate transverse Breit and QED corrections to energy levels in a multiconfiguration Dirac-Fock environment , 1984 .