ATOMIC DATA AND SPECTRAL MODEL FOR Fe II

We present extensive calculations of radiative transition rates and electron impact collision strengths for Fe ii. The data sets involve 52 levels from the 3d7, 3d64s, and 3 d 5 4 s 2 ?> configurations. Computations of A-values are carried out with a combination of state-of-the-art multiconfiguration approaches, namely the relativistic Hartree–Fock, Thomas–Fermi–Dirac potential, and Dirac–Fock methods, while the R-matrix plus intermediate coupling frame transformation, Breit–Pauli R-matrix, and Dirac R-matrix packages are used to obtain collision strengths. We examine the advantages and shortcomings of each of these methods, and estimate rate uncertainties from the resulting data dispersion. We proceed to construct excitation balance spectral models, and compare the predictions from each data set with observed spectra from various astronomical objects. We are thus able to establish benchmarks in the spectral modeling of [Fe ii] emission in the IR and optical regions as well as in the UV Fe ii absorption spectra. Finally, we provide diagnostic line ratios and line emissivities for emission spectroscopy as well as column densities for absorption spectroscopy. All atomic data and models are available online and through the AtomPy atomic data curation environment.

[1]  A. Hibbert,et al.  Radiative transition rates for the forbidden lines in Fe II , 2011 .

[2]  N. R. Badnell,et al.  A Breit-Pauli distorted wave implementation for autostructure , 2011, Comput. Phys. Commun..

[3]  K. Lodders,et al.  The abundance of iron-peak elements and the dust composition in η Carinae: manganese , 2011 .

[4]  K. Korista,et al.  THE QUASAR OUTFLOW CONTRIBUTION TO AGN FEEDBACK: VLT MEASUREMENTS OF SDSS J0318-0600 , 2009, 0911.3896.

[5]  C. Ramsbottom,et al.  ELECTRON-IMPACT EXCITATION OF Ni ii: EFFECTIVE COLLISION STRENGTHS FOR OPTICALLY ALLOWED FINE-STRUCTURE TRANSITIONS , 2009 .

[6]  N. Badnell,et al.  Radiative transition rates and collision strengths for Si II , 2009, 0910.5425.

[7]  J. Gurell,et al.  The FERRUM project: transition probabilities for forbidden lines in [Fe II] and experimental metastable lifetimes , 2009, 0910.0699.

[8]  M. Pindzola,et al.  Electron-impact ionization of ground and metastable neon , 2009 .

[9]  A. Hibbert,et al.  Electric quadrupole and magnetic dipole transitions among 3d6 levels of Fe III , 2009 .

[10]  J. Maza,et al.  Ultraviolet Fe ii emission in z∼ 2 quasars , 2009, 0902.2057.

[11]  M. Bautista,et al.  Properties of the ionized gas in HH 202 – II. Results from echelle spectrophotometry with Ultraviolet Visual Echelle Spectrograph , 2009, 0901.4311.

[12]  M. Bautista Electronic correlations and polarizability of the Thomas–Fermi–Dirac–Amaldi potential: applications to the singly ionized iron-peak species , 2008 .

[13]  H. Rix,et al.  Black Hole Masses and Enrichment of z ~ 6 SDSS Quasars , 2007, 0707.1662.

[14]  D. C. Griffin,et al.  Relativistic radiatively damped R-matrix calculation of the electron-impact excitation of W46+ , 2006 .

[15]  R. Rubin,et al.  The [Fe IV] Discrepancy: Constraining the Iron Abundances in Nebulae , 2005, astro-ph/0504131.

[16]  N. Badnell,et al.  Electron-impact excitation of Xe26+ and its resultant spectral signature , 2004 .

[17]  C. Mendoza,et al.  K-Shell Photoabsorption of Oxygen Ions , 2004, astro-ph/0411374.

[18]  J. Baldwin,et al.  The Origin of Fe II Emission in Active Galactic Nuclei , 2004 .

[19]  D. C. Griffin,et al.  Electron-impact excitation of neon: a pseudo-state convergence study , 2004 .

[20]  M. Bautista Atomic data from the iron project - LV. Electron impact excitation of Ni II , 2004 .

[21]  J. Baldwin,et al.  The Origin of Fe II Emission in AGN , 2004, astro-ph/0407404.

[22]  C. Mendoza,et al.  Modeling of Iron K Lines: Radiative and Auger Decay Data for Fe II-Fe IX , 2003, astro-ph/0306321.

[23]  R. Blandford,et al.  Two‐dimensional adiabatic flows on to a black hole – I. Fluid accretion , 2003, astro-ph/0306184.

[24]  D. C. Griffin,et al.  An R-matrix with pseudo states calculation of electron-impact excitation in Ar , 2003 .

[25]  C. Noble,et al.  Electron impact excitation of Fe III : forbidden transitions , 2002 .

[26]  D. C. Griffin,et al.  Electron-impact excitation of Ne5+ , 2001 .

[27]  B. Wilkes,et al.  An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1 , 2001, astro-ph/0104320.

[28]  J. Baldwin,et al.  Continuum Pumping of [Fe II] in the Orion Nebula , 2000 .

[29]  S. Collin,et al.  The Fe II problem in NLS1s , 2000, astro-ph/0005153.

[30]  D. C. Griffin,et al.  R -matrix electron-impact excitation cross sections in intermediate coupling: an MQDT transformation approach , 1998 .

[31]  Manuel A. Bautista,et al.  Ionization Structure and Spectra of Iron in Gaseous Nebulae , 1997, astro-ph/9710073.

[32]  Buell T. Jannuzi,et al.  The Ultraviolet Properties of the Narrow-Line Quasar I Zw 1 , 1997, astro-ph/9706264.

[33]  Nigel R. Badnell,et al.  On the effects of the two-body non-fine-structure operators of the Breit - Pauli Hamiltonian , 1997 .

[34]  P. Quinet,et al.  Atomic data from the IRON Project. XIX. Radiative transition probabilities for forbidden lines in Fe II , 1996 .

[35]  Anil K. Pradhan,et al.  Atomic data from the Iron Project. XVII. Radiative transition probabilities for dipole allowed and forbidden transitions in Fe III , 1996 .

[36]  P. Quinet Transition probabilities for forbidden lines of Fe III , 1996 .

[37]  I. P. Grant,et al.  GRASP92: a package for large-scale relativistic atomic structure calculations , 1996, Comput. Phys. Commun..

[38]  K. Berrington,et al.  RMATRX1: Belfast atomic R-matrix codes , 1995 .

[39]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[40]  N. Badnell Dielectronic recombination of Fe22+ and Fe21+ , 1986 .

[41]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[42]  R. I. Karaziya Excited electron orbit collapse and atomic spectra , 1981 .

[43]  B. J. McKenzie,et al.  The transverse electron-electron interaction in atomic structure calculations , 1980 .

[44]  A Burgess,et al.  On the Bethe approximation , 1978 .

[45]  W. Eissner,et al.  Techniques for the calculation of atomic structures and radiative data including relativistic corrections , 1974 .

[46]  A. Burgess Coulomb integrals: tables and sum rules , 1974 .

[47]  H. Nussbaumer,et al.  A programme for calculating atomic structures , 1969 .

[48]  G. Racah L(L+1)Correction in the Spectra of the Iron Group , 1952 .

[49]  R. E. Trees Term Values in the3d54sConfiguration of Fe III , 1951 .

[50]  R. E. Trees Configuration Interaction in Mn II , 1951 .

[51]  A. Hibbert,et al.  Electron collisions with Fe-peak elements: Forbidden transitions between the low lying valence states 3d6, 3d54s, and 3d54p of Fe III , 2007 .

[52]  S. Johansson,et al.  The FERRUM Project: Experimental transition probabilities of (Fe II) and astrophysical applications , 2003 .

[53]  Claudio Mendoza,et al.  A Complete Set of Radiative and Auger Rates for K-vacancy States in Fe XVIII-Fe XXV , 2003 .

[54]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[55]  I. P. Grant,et al.  A program to calculate transverse Breit and QED corrections to energy levels in a multiconfiguration Dirac-Fock environment , 1984 .