Investigation of PT58 and PEG-6000-based finned heat sinks for thermal management of electronics

[1]  H. Ali,et al.  Phase change materials for thermal management and energy storage: A review , 2022, Journal of Energy Storage.

[2]  M. Jabbal,et al.  Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metal-foam to enhance cooling performance of electronics , 2022, Journal of Energy Storage.

[3]  H. Ali,et al.  Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets , 2022, International Journal of Heat and Mass Transfer.

[4]  M. Jabbal,et al.  Towards the thermal management of electronic devices: A parametric investigation of finned heat sink filled with PCM , 2021, International Communications in Heat and Mass Transfer.

[5]  S. Sahu,et al.  A comparative study and optimization of phase change material based heat sinks for thermal management of electronic components , 2021, Journal of Energy Storage.

[6]  S. Sahu,et al.  Thermal performance of heat sink using nano-enhanced phase change material (NePCM) for cooling of electronic components , 2021, Microelectronics Reliability.

[7]  Changyu Liu,et al.  Experimental investigation on thermal properties of Al2O3 nanoparticles dispersed paraffin for thermal energy storage applications , 2021, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects.

[8]  A. Arshad,et al.  Numerical simulation of the melting of a NePCM for cooling of electronic components , 2021 .

[9]  Khalil Dammak,et al.  Thermal reliability-based design optimization using Kriging model of PCM based pin fin heat sink , 2021 .

[10]  M. Jabbal,et al.  Transient Simulation of Finned Heat Sinks Embedded with PCM for Electronics Cooling , 2020, Advances in Heat Transfer and Thermal Engineering.

[11]  S. Bhattacharyya,et al.  CPU heat sink cooling by triangular shape micro-pin-fin: Numerical study , 2020 .

[12]  F. Mastroddi,et al.  Numerical and experimental investigation of piezoelectric energy harvester based on flag-flutter , 2020, Aerospace Science and Technology.

[13]  Emmanuel C. Nsofor,et al.  Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system , 2020 .

[14]  M. Jabbal,et al.  Synthetic jet actuators for heat transfer enhancement – A critical review , 2020 .

[15]  Paolo Gaudenzi,et al.  Design and performance evaluation of a piezoelectric aeroelastic energy harvester based on the limit cycle oscillation phenomenon , 2019, Acta Astronautica.

[16]  M. Afrand,et al.  Studies on optimum fins number in PCM-based heat sinks , 2019, Energy.

[17]  Binlin Dou,et al.  An experimental investigation on thermal stratification characteristics with PCMs in solar water tank , 2019, Solar Energy.

[18]  Hameed B. Mahood,et al.  Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM , 2019, Solar Energy.

[19]  Z. Tan,et al.  Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications , 2019, The Journal of Chemical Thermodynamics.

[20]  D. Li,et al.  Investigation of thermal and optical performance of a phase change material–filled double-glazing unit , 2018 .

[21]  Xiaohu Yang,et al.  Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock , 2018 .

[22]  W. Yan,et al.  An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material , 2018 .

[23]  M. Jabbal,et al.  Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison , 2018 .

[24]  H. Ali,et al.  Experimental passive electronics cooling: Parametric investigation of pin-fin geometries and efficient phase change materials , 2017 .

[25]  A. Assi,et al.  Using phase change material in heat sinks to cool electronics devices with intermittent usage , 2017, 2017 IEEE 7th International Conference on Power and Energy Systems (ICPES).

[26]  S. M. Sohel Murshed,et al.  A critical review of traditional and emerging techniques and fluids for electronics cooling , 2017 .

[27]  Davood Toghraie,et al.  Numerical simulation of heat transfer and fluid flow of Water-CuO Nanofluid in a sinusoidal channel with a porous medium , 2017 .

[28]  H. Ali,et al.  Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction , 2017 .

[29]  Yanping Du,et al.  Towards improving charge/discharge rate of latent heat thermal energy storage (LHTES) by embedding metal foams in phase change materials (PCMs) , 2016 .

[30]  M. J. Hosseini,et al.  A numerical method for PCM-based pin fin heat sinks optimization , 2015 .

[31]  Tian Jian Lu,et al.  Unidirectional freezing of phase change materials saturated in open-cell metal foams , 2015 .

[32]  R. Bahrampoury,et al.  Experimental and numerical evaluation of longitudinally finned latent heat thermal storage systems , 2015 .

[33]  Chakravarthy Balaji,et al.  Thermal performance of a PCM heat sink under different heat loads: An experimental study , 2014 .

[34]  Shufen Zhang,et al.  PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity , 2014 .

[35]  Raya Al-Dadah,et al.  Experimental investigation of inserts configurations and PCM type on the thermal performance of PCM based heat sinks , 2013 .

[36]  P. Xi,et al.  Synthesis and thermal energy storage properties of the polyurethane solid–solid phase change materials with a novel tetrahydroxy compound , 2012 .

[37]  S. Saha,et al.  Thermal Management of Electronics Using PCM-Based Heat Sink Subjected to Cyclic Heat Load , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[38]  Yue-Tzu Yang,et al.  Numerical simulation of three-dimensional transient cooling application on a portable electronic device using phase change material , 2012 .

[39]  Yue-Tzu Yang,et al.  Three-dimensional transient cooling simulations of a portable electronic device using PCM (phase change materials) in multi-fin heat sink , 2011 .

[40]  Salmaan Craig,et al.  Tests of prototype PCM ‘sails’ for office cooling , 2011 .

[41]  David Atienza,et al.  Energy-efficient variable-flow liquid cooling in 3D stacked architectures , 2010, 2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010).

[42]  Pradip Dutta,et al.  Studies on Optimum Distribution of Fins in Heat Sinks Filled With Phase Change Materials , 2008 .

[43]  G. Ziskind,et al.  Numerical investigation of a PCM-based heat sink with internal fins: Constant heat flux , 2008 .

[44]  K. Srinivasan,et al.  A numerical model for heat sinks with phase change materials and thermal conductivity enhancers , 2006 .

[45]  Cristina H. Amon,et al.  PCM thermal control unit for portable electronic devices: experimental and numerical studies , 2003 .

[46]  E. M. Alawadhi,et al.  Performance analysis of an enhanced PCM thermal control unit , 2000, ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.00CH37069).

[47]  L. T. Yeh,et al.  Review of Heat Transfer Technologies in Electronic Equipment , 1995 .

[48]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .