CONTINUATION METHODS FOR THE COMPUTATION OF ZEROS OF SZEGO POLYNOMIALS
暂无分享,去创建一个
[1] William B. Gragg,et al. Downdating of Szego Polynomials and Data Fitting Applications , 1992 .
[2] J. Demmel. Trading Off Parallelism and Numerical Stability , 1992 .
[3] Gene H. Golub,et al. Linear algebra for large scale and real-time applications , 1993 .
[4] A. Hoffman,et al. Some metric inequalities in the space of matrices , 1955 .
[5] Jack J. Dongarra,et al. A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem , 1993, SIAM J. Sci. Comput..
[6] L. Reichel,et al. A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .
[7] H. Landau. Moments in mathematics , 1987 .
[8] Lothar Reichel,et al. On the construction of Szego polynomials , 1993 .
[9] William B. Gragg,et al. The QR algorithm for unitary Hessenberg matrices , 1986 .
[10] J. Dongarra,et al. A Parallel Algorithm for the Non-Symmetric Eigenvalue Problem , 1991 .
[11] Michael T. Heath. Hypercube multiprocessors 1987 , 1987 .
[12] William B. Jones,et al. Szego polynomials applied to frequency analysis , 1993 .
[13] E. Allgower,et al. Numerical Continuation Methods , 1990 .
[14] W. Gragg,et al. The generalized Schur algorithm for the superfast solution of Toeplitz systems , 1987 .
[15] L. Reichel,et al. An analogue for Szego polynomials of the Clenshaw algorithm , 1993 .
[16] Brian T. Smith,et al. Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.
[17] Tien-Yien Li,et al. Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems , 1992 .
[18] L. Reichel,et al. On the eigenproblem for orthogonal matrices , 1986, 1986 25th IEEE Conference on Decision and Control.
[19] Tosio Kato. Perturbation theory for linear operators , 1966 .
[20] Karel Segeth,et al. Numerical Methods in Linear Algebra , 1994 .
[21] Danny C. Sorensen,et al. An implementation of a divide and conquer algorithm for the unitary eigen problem , 1992, TOMS.
[22] Edward B. Saff,et al. Asymptotics for zeros of Szego polynomials associated with trigonometric polynomial signals , 1992 .
[23] Gene H. Golub,et al. Matrix computations , 1983 .
[24] Stefan Goedecker,et al. Remark on Algorithms to Find Roots of Polynomials , 1994, SIAM J. Sci. Comput..
[25] Andrew D Calway,et al. Mathematics in Signal Processing II , 1990 .
[26] Thomas Kailath,et al. Modern signal processing , 1985 .
[27] W. Gragg. Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle , 1993 .
[28] U. Grenander,et al. Toeplitz Forms And Their Applications , 1958 .
[29] Angelika Bunse-Gerstner,et al. Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .
[30] Danny C. Sorensen,et al. Corrigendum: Algorithm 730: An implementation of a divide and conquer algorithm for the unitary eigenproblem , 1994, TOMS.
[31] James A. Cadzow,et al. Foundations of digital signal processing and data analysis , 1987 .
[32] Lonnie C. Ludeman,et al. Fundamentals of Digital Signal Processing , 1986 .
[33] Eugene L. Allgower,et al. Continuation and path following , 1993, Acta Numerica.
[34] B. Parlett,et al. Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..
[35] L. Trefethen,et al. Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .
[36] William B. Jones,et al. Szego¨ polynomials associated with Wiener-Levinson filters , 1990 .
[37] W. Gragg,et al. Numerical experience with a superfast real Toeplitz solver , 1989 .
[38] Tien-Yien Li,et al. Homotopy algorithm for symmetric eigenvalue problems , 1989 .
[39] Xian-He Sun,et al. Parallel Homotopy Algorithm for the Symmetric Tridiagonal Eigenvalue Problem , 1991, SIAM J. Sci. Comput..