CONTINUATION METHODS FOR THE COMPUTATION OF ZEROS OF SZEGO POLYNOMIALS

Abstract Let { φ j } ∞ j = 0 be a family of monic polynomials that are orthogonal with respect to an inner product on the unit circle. The polynomials φ j arise in time series analysis and are often referred to as Szego polynomials or Levinson polynomials. Knowledge about the location of their zeros is important for frequency analysis of time series and for filter implementation. We present fast algorithms for computing the zeros of the polynomials φ n based on the observation that the zeros are eigenvalues of a rank-one modification of a unitary upper Hessenberg matrix H n (0) of order n . The algorithms first determine the spectrum of H n (0) by one of several available schemes that require only O ( n 2 ) arithmetic operations. The eigenvalues of the rank-one perturbation are then determined from the eigenvalues of H n (0) by a continuation method. The computation of the n zeros of φ n in this manner typically requires only O ( n 2 ) arithmetic operations. The algorithms have a structure that lends itself well to parallel computation. The latter is of significance in real-time applications.

[1]  William B. Gragg,et al.  Downdating of Szego Polynomials and Data Fitting Applications , 1992 .

[2]  J. Demmel Trading Off Parallelism and Numerical Stability , 1992 .

[3]  Gene H. Golub,et al.  Linear algebra for large scale and real-time applications , 1993 .

[4]  A. Hoffman,et al.  Some metric inequalities in the space of matrices , 1955 .

[5]  Jack J. Dongarra,et al.  A Parallel Algorithm for the Nonsymmetric Eigenvalue Problem , 1993, SIAM J. Sci. Comput..

[6]  L. Reichel,et al.  A divide and conquer method for unitary and orthogonal eigenproblems , 1990 .

[7]  H. Landau Moments in mathematics , 1987 .

[8]  Lothar Reichel,et al.  On the construction of Szego polynomials , 1993 .

[9]  William B. Gragg,et al.  The QR algorithm for unitary Hessenberg matrices , 1986 .

[10]  J. Dongarra,et al.  A Parallel Algorithm for the Non-Symmetric Eigenvalue Problem , 1991 .

[11]  Michael T. Heath Hypercube multiprocessors 1987 , 1987 .

[12]  William B. Jones,et al.  Szego polynomials applied to frequency analysis , 1993 .

[13]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[14]  W. Gragg,et al.  The generalized Schur algorithm for the superfast solution of Toeplitz systems , 1987 .

[15]  L. Reichel,et al.  An analogue for Szego polynomials of the Clenshaw algorithm , 1993 .

[16]  Brian T. Smith,et al.  Matrix Eigensystem Routines — EISPACK Guide , 1974, Lecture Notes in Computer Science.

[17]  Tien-Yien Li,et al.  Homotopy-determinant algorithm for solving nonsymmetric eigenvalue problems , 1992 .

[18]  L. Reichel,et al.  On the eigenproblem for orthogonal matrices , 1986, 1986 25th IEEE Conference on Decision and Control.

[19]  Tosio Kato Perturbation theory for linear operators , 1966 .

[20]  Karel Segeth,et al.  Numerical Methods in Linear Algebra , 1994 .

[21]  Danny C. Sorensen,et al.  An implementation of a divide and conquer algorithm for the unitary eigen problem , 1992, TOMS.

[22]  Edward B. Saff,et al.  Asymptotics for zeros of Szego polynomials associated with trigonometric polynomial signals , 1992 .

[23]  Gene H. Golub,et al.  Matrix computations , 1983 .

[24]  Stefan Goedecker,et al.  Remark on Algorithms to Find Roots of Polynomials , 1994, SIAM J. Sci. Comput..

[25]  Andrew D Calway,et al.  Mathematics in Signal Processing II , 1990 .

[26]  Thomas Kailath,et al.  Modern signal processing , 1985 .

[27]  W. Gragg Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle , 1993 .

[28]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[29]  Angelika Bunse-Gerstner,et al.  Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .

[30]  Danny C. Sorensen,et al.  Corrigendum: Algorithm 730: An implementation of a divide and conquer algorithm for the unitary eigenproblem , 1994, TOMS.

[31]  James A. Cadzow,et al.  Foundations of digital signal processing and data analysis , 1987 .

[32]  Lonnie C. Ludeman,et al.  Fundamentals of Digital Signal Processing , 1986 .

[33]  Eugene L. Allgower,et al.  Continuation and path following , 1993, Acta Numerica.

[34]  B. Parlett,et al.  Forward Instability of Tridiagonal QR , 1993, SIAM J. Matrix Anal. Appl..

[35]  L. Trefethen,et al.  Pseudozeros of polynomials and pseudospectra of companion matrices , 1994 .

[36]  William B. Jones,et al.  Szego¨ polynomials associated with Wiener-Levinson filters , 1990 .

[37]  W. Gragg,et al.  Numerical experience with a superfast real Toeplitz solver , 1989 .

[38]  Tien-Yien Li,et al.  Homotopy algorithm for symmetric eigenvalue problems , 1989 .

[39]  Xian-He Sun,et al.  Parallel Homotopy Algorithm for the Symmetric Tridiagonal Eigenvalue Problem , 1991, SIAM J. Sci. Comput..