A Bio-Inspired, Computational Model Suggests Velocity Gradients of Optic Flow Locally Encode Ordinal Depth at Surface Borders and Globally They Encode Self-Motion

Visual navigation requires the estimation of self-motion as well as the segmentation of objects from the background. We suggest a definition of local velocity gradients to compute types of self-motion, segment objects, and compute local properties of optical flow fields, such as divergence, curl, and shear. Such velocity gradients are computed as velocity differences measured locally tangent and normal to the direction of flow. Then these differences are rotated according to the local direction of flow to achieve independence of that direction. We propose a bio-inspired model for the computation of these velocity gradients for video sequences. Simulation results show that local gradients encode ordinal surface depth, assuming self-motion in a rigid scene or object motions in a nonrigid scene. For translational self-motion velocity, gradients can be used to distinguish between static and moving objects. The information about ordinal surface depth and self-motion can help steering control for visual navigation.

[1]  Allan D. Jepson,et al.  Visual Perception of Three-Dimensional Motion , 1990, Neural Computation.

[2]  G. Orban,et al.  Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Pierre Kornprobst,et al.  Action recognition via bio-inspired features: The richness of center-surround interaction , 2012, Comput. Vis. Image Underst..

[4]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[5]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[6]  Heiko Neumann,et al.  Disambiguating Visual Motion Through Contextual Feedback Modulation , 2004, Neural Computation.

[7]  R A Andersen,et al.  Neural responses to velocity gradients in macaque cortical area MT , 1996, Visual Neuroscience.

[8]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[9]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[10]  J. Koenderink Optic flow , 1986, Vision Research.

[11]  D. Burr,et al.  Two stages of visual processing for radial and circular motion , 1995, Nature.

[12]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[13]  Nigel J. T. Thomas The Multidimensional Spectrum of Imagination: Images, Dreams, Hallucinations, and Active, Imaginative Perception , 2014 .

[14]  Allan D. Jepson,et al.  Subspace methods for recovering rigid motion I: Algorithm and implementation , 2004, International Journal of Computer Vision.

[15]  Markus Lappe,et al.  A Neural Network for the Processing of Optic Flow from Ego-Motion in Man and Higher Mammals , 1993, Neural Computation.

[16]  R. Wurtz,et al.  Medial Superior Temporal Area Neurons Respond to Speed Patterns in Optic Flow , 1997, The Journal of Neuroscience.

[17]  William H. Warren,et al.  Optic flow is used to control human walking , 2001, Nature Neuroscience.

[18]  Pierre Kornprobst,et al.  Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems , 2011, EURASIP J. Adv. Signal Process..

[19]  R. Wurtz,et al.  Response to motion in extrastriate area MSTl: center-surround interactions. , 1998, Journal of neurophysiology.

[20]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. , 1991, Journal of neurophysiology.

[22]  Ohad Ben-Shahar,et al.  The Perceptual Organization of Texture Flow: A Contextual Inference Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  P. Schwindt,et al.  Repetitive firing in layer V neurons from cat neocortex in vitro. , 1984, Journal of neurophysiology.

[24]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[25]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[26]  Heiko Neumann,et al.  A Model of Motion Transparency Processing with Local Center-Surround Interactions and Feedback , 2011, Neural Computation.

[27]  J. Perrone,et al.  A model of self-motion estimation within primate extrastriate visual cortex , 1994, Vision Research.

[28]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[29]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[31]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[32]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[33]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[34]  Manuela Chessa,et al.  An integrated neuromimetic architecture for direct motion interpretation in the log-polar domain , 2014, Comput. Vis. Image Underst..

[35]  Heiko Neumann,et al.  Neural Mechanisms for Mid-Level Optical Flow Pattern Detection , 2007, ICANN.

[36]  T J Sejnowski,et al.  A Model for Encoding Multiple Object Motions and Self-Motion in Area MST of Primate Visual Cortex , 1998, The Journal of Neuroscience.

[37]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[38]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[39]  John K. Tsotsos,et al.  Attending to visual motion , 2005, Comput. Vis. Image Underst..

[40]  H. Neumann,et al.  Object Segmentation from Motion Discontinuities and Temporal Occlusions–A Biologically Inspired Model , 2008, PloS one.

[41]  H. Nyquist,et al.  Certain factors affecting telegraph speed , 1924, Journal of the A.I.E.E..

[42]  L M Vaina,et al.  Computational modelling of optic flow selectivity in MSTd neurons. , 1998, Network.

[43]  Li Li,et al.  Perception of heading during rotation: sufficiency of dense motion parallax and reference objects , 2000, Vision Research.

[44]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[45]  S. Grossberg,et al.  A neural model of motion processing and visual navigation by cortical area MST. , 1999, Cerebral cortex.

[46]  R. Hetherington The Perception of the Visual World , 1952 .

[47]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[48]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.