Localization for nonabelian group actions

Suppose X is a compact symplectic manifold acted on by a compact Lie group K (which may be nonabelian) in a Hamiltonian fashion, with moment map µ : X → Lie(K) ∗ and Marsden-Weinstein reduction MX = µ −1 (0)/K. There is then a natural surjective map �0 from the equivariant cohomology H ∗ K (X) of X to the cohomology H ∗ (MX). In this paper we prove a formula (Theorem 8.1, the residue formula) for the evaluation on the fundamental class of MX of any �0 ∈ H ∗ (MX) whose degree is the dimension of MX, provided that 0 is a regular value of the moment map µ on X. This formula is given in terms of any class � ∈ H ∗ (X) for which �0(�) = �0, and involves ∗

[1]  M. Vergne,et al.  Zeros d’un champ de vecteurs et classes caracteristiques equivariantes , 1983 .

[2]  J. Duistermaat Equivariant cohomology and stationary phase , 1993 .

[3]  J. Duistermaat,et al.  On the variation in the cohomology of the symplectic form of the reduced phase space , 1982 .

[4]  D. Quillen,et al.  Superconnections, thom classes, and equivariant differential forms , 1986 .

[5]  M. Vergne,et al.  The Orbit Method in Representation Theory , 1990 .

[6]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[7]  F. Kirwan The cohomology rings of moduli spaces of bundles over Riemann surfaces , 1992 .

[8]  J. Barros-Neto An introduction to the theory of distributions , 1973 .

[9]  E. Witten On quantum gauge theories in two dimensions , 1991 .

[10]  S. Sternberg,et al.  Convexity properties of the moment mapping , 1982 .

[11]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[12]  V. Guillemin,et al.  Heckman, Kostant, and Steinberg Formulas for Symplectic Manifolds , 1990 .

[13]  Eugene Lerman,et al.  On the Kostant multiplicity formula , 1988 .

[14]  Michael Atiyah,et al.  The moment map and equivariant cohomology , 1984 .

[15]  Cohomologie équivariante des points semi-stables. , 1991 .

[16]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[18]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[19]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[20]  R. Hartshorne Residues And Duality , 1966 .

[21]  H. Cartan Cohomologie réelle d'un espace fibré principal différentiable. II : transgression dans un groupe de Lie et dans un espace fibré principal ; recherche de la cohomologie de l'espace de base , 1949 .

[22]  Harish-Chandra Differential Operators on a Semisimple Lie Algebra , 1957 .

[23]  M. Vergne,et al.  Orbites Coadjointes et Cohomologie Équivariante , 1990 .

[24]  T. Kawasaki The signature theorem for V-manifolds , 1978 .

[25]  Shlomo Sternberg,et al.  Convexity properties of the moment mapping. II , 1982 .

[26]  Seminario matematico Rendiconti del Seminario matematico , 1949 .

[27]  J. Kalkman Cohomology rings of symplectic quotients. , 1995 .

[28]  M. J. Gotay On coisotropic imbeddings of presymplectic manifolds , 1982 .

[29]  F. Kirwan Cohomology of Quotients in Symplectic and Algebraic Geometry. (MN-31), Volume 31 , 1984 .

[30]  D. E. Edmunds THE ANALYSIS OF LINEAR PARTIAL DIFFERENTIAL OPERATORS I–IV (Grundlehren der mathematischen Wissenschaften 256, 257, 274, 275) , 1987 .

[31]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[32]  Michael Atiyah,et al.  Convexity and Commuting Hamiltonians , 1982 .

[33]  Raoul Bott,et al.  Nondegenerate Critical Manifolds , 1954 .

[34]  Two-dimensional gauge theories revisited , 1992, hep-th/9204083.