Unifying some higher-order statistic-based methods for errors-in-variables model identification

In this paper, the problem of identifying linear discrete-time systems from noisy input and output data is addressed. Several existing methods based on higher-order statistics are presented. It is shown that they stem from the same set of equations and can thus be united from the viewpoint of extended instrumental variable methods. A numerical example is presented which confirms the theoretical results. Some possible extensions of the methods are then given.

[1]  Bor-Sen Chen,et al.  A higher-order correlation method for model-order and parameter estimation , 1994, Autom..

[2]  D. Brillinger Time series - data analysis and theory , 1981, Classics in applied mathematics.

[3]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[4]  Wei Xing Zheng,et al.  Accuracy analysis of bias-eliminating least squares estimates for errors-in-variables systems , 2007, Autom..

[5]  Rik Pintelon,et al.  Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models , 2007, Autom..

[6]  Hugues Garnier,et al.  On instrumental variable-based methods for errors-in-variables model identification , 2008 .

[7]  Kaushik Mahata,et al.  An improved bias-compensation approach for errors-in-variables model identification , 2007, Autom..

[8]  Torsten Söderström,et al.  Extending the Frisch scheme for errors‐in‐variables identification to correlated output noise , 2008 .

[9]  Torsten Söderström,et al.  Statistical Analysis of a Third-Order Cumulants Based Algorithm for Discrete-Time Errors-in-Variables Identification , 2008 .

[10]  Hugues Garnier,et al.  Third-order cumulants based methods for continuous-time errors-in-variables model identification , 2008, Autom..

[11]  Wei Xing Zheng,et al.  ACCURACY ANALYSIS OF BIAS-ELIMINATING LEAST SQUARES ESTIMATES FOR ERRORS-IN-VARIABLES IDENTIFICATION , 2006 .

[12]  Y. Inouye,et al.  Identification of linear systems using input-output cumulants , 1991 .

[13]  Torsten Söderström,et al.  Errors-in-variables methods in system identification , 2018, Autom..

[14]  Y. Inouye,et al.  Identification of linear systems with noisy input using input-output cumulants , 1994 .

[15]  Umberto Soverini,et al.  Maximum likelihood identification of noisy input-output models , 2007, Autom..

[16]  Hugues Garnier,et al.  Continuous-time model identification from noisy input/output measurements using fourth-order cumulants , 2007, 2007 46th IEEE Conference on Decision and Control.

[17]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[18]  Hugues Garnier,et al.  Identification of continuous-time errors-in-variables models , 2006, Autom..

[19]  Jerry M. Mendel,et al.  Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications , 1991, Proc. IEEE.