Glycan–glycan interactions determine Leishmania attachment to the midgut of permissive sand fly vectors

Force spectroscopy was used to measure the adhesion of Leishmania to synthetic mimics of galectins on the sand fly midgut.

[1]  J. Valenzuela,et al.  Exploring Lutzomyia longipalpis sand flies vector competence to Leishmania major parasites. , 2020, The Journal of infectious diseases.

[2]  B. J. Walker,et al.  Boundary behaviours of Leishmania mexicana: A hydrodynamic simulation study , 2018, Journal of theoretical biology.

[3]  R. Wheeler,et al.  Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections , 2018, bioRxiv.

[4]  E. Dague,et al.  The Role of Glycans in Bacterial Adhesion to Mucosal Surfaces: How Can Single-Molecule Techniques Advance Our Understanding? , 2018, Microorganisms.

[5]  S. Kamhawi,et al.  Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity , 2018, Nature microbiology.

[6]  S. Kamhawi,et al.  Sequential blood meals augment vector infectiousness by promoting Leishmania replication and triggering amplification of metacyclics via a novel retroleptomonad developmental stage , 2018, Nature Microbiology.

[7]  A. R. Hall,et al.  Polymers and biopolymers at interfaces , 2018, Reports on progress in physics. Physical Society.

[8]  P. Volf,et al.  Lipophosphoglycan polymorphisms do not affect Leishmania amazonensis development in the permissive vectors Lutzomyia migonei and Lutzomyia longipalpis , 2017, Parasites & Vectors.

[9]  G. Leggett,et al.  Salt Dependence of the Tribological Properties of a Surface-Grafted Weak Polycation in Aqueous Solution , 2017, Tribology Letters.

[10]  Jane E. Dalton,et al.  Skin parasite landscape determines host infectiousness in visceral leishmaniasis , 2017, Nature Communications.

[11]  N. Juge,et al.  Use of Atomic Force Microscopy to Study the Multi-Modular Interaction of Bacterial Adhesins to Mucins , 2016, International journal of molecular sciences.

[12]  P. Volf,et al.  Characterization of a midgut mucin-like glycoconjugate of Lutzomyia longipalpis with a potential role in Leishmania attachment , 2016, Parasites & Vectors.

[13]  J. Burchell,et al.  Interactions of mucins with the Tn or Sialyl Tn cancer antigens including MUC1 are due to GalNAc-GalNAc interactions. , 2016, Glycobiology.

[14]  J. Tiralongo,et al.  Glycan:glycan interactions: High affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells , 2015, Proceedings of the National Academy of Sciences.

[15]  R. Salvarezza,et al.  Localization of adhesins on the surface of a pathogenic bacterial envelope through atomic force microscopy. , 2015, Nanoscale.

[16]  G. Leggett,et al.  Nanoscale Contact Mechanics between Two Grafted Polyelectrolyte Surfaces , 2015 .

[17]  G. Boons,et al.  Leishmania lipophosphoglycan: how to establish structure-activity relationships for this highly complex and multifunctional glycoconjugate? , 2015, Front. Cell. Infect. Microbiol..

[18]  F. Supek,et al.  Recent Developments in Drug Discovery for Leishmaniasis and Human African Trypanosomiasis , 2014, Chemical reviews.

[19]  A. Beaussart,et al.  Nanoscale Adhesion Forces of Pseudomonas aeruginosa Type IV Pili , 2014, ACS nano.

[20]  P. Volf,et al.  Structural comparison of lipophosphoglycan from Leishmania turanica and L. major, two species transmitted by Phlebotomus papatasi. , 2014, Parasitology international.

[21]  Y. Dufrêne Atomic Force Microscopy in Microbiology: New Structural and Functional Insights into the Microbial Cell Surface , 2014, mBio.

[22]  K. Chang,et al.  The role of surface glycoconjugates in Leishmania midgut attachment examined by competitive binding assays and experimental development in sand flies , 2013, Parasitology.

[23]  P. Volf,et al.  Phlebotomus orientalis Sand Flies from Two Geographically Distant Ethiopian Localities: Biology, Genetic Analyses and Susceptibility to Leishmania donovani , 2013, PLoS neglected tropical diseases.

[24]  A. Beaussart,et al.  Adhesion and nanomechanics of pili from the probiotic Lactobacillus rhamnosus GG. , 2013, ACS nano.

[25]  G. Vancso,et al.  Probing biofouling resistant polymer brush surfaces by atomic force microscopy based force spectroscopy. , 2013, Colloids and surfaces. B, Biointerfaces.

[26]  R. Soares,et al.  Glycoconjugates in New World species of Leishmania: polymorphisms in lipophosphoglycan and glycoinositolphospholipids and interaction with hosts. , 2012, Biochimica et biophysica acta.

[27]  H. Nader,et al.  Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro , 2012, Parasites & Vectors.

[28]  J. Cano,et al.  Leishmaniasis Worldwide and Global Estimates of Its Incidence , 2012, PloS one.

[29]  T. Dam,et al.  Enhanced self-association of mucins possessing the T and Tn carbohydrate cancer antigens at the single-molecule level. , 2012, Biomacromolecules.

[30]  S. Croft,et al.  Leishmaniasis chemotherapy--challenges and opportunities. , 2011, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[31]  G. Curley,et al.  Identification, Cloning, and Characterization of Two N-Acetylgalactosamine-binding Lectins from the Albumen Gland of Helix pomatia , 2011, The Journal of Biological Chemistry.

[32]  Yves F Dufrêne,et al.  Force-induced formation and propagation of adhesion nanodomains in living fungal cells , 2010, Proceedings of the National Academy of Sciences.

[33]  P. Volf,et al.  Stage-Specific Adhesion of Leishmania Promastigotes to Sand Fly Midguts Assessed Using an Improved Comparative Binding Assay , 2010, PLoS neglected tropical diseases.

[34]  Guangzhao Mao,et al.  Immobilization and molecular interactions between bacteriophage and lipopolysaccharide bilayers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[35]  S. Beverley,et al.  Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies , 2010, Cellular microbiology.

[36]  P. Volf,et al.  Leishmania major Glycosylation Mutants Require Phosphoglycans (lpg2 −) but Not Lipophosphoglycan (lpg1 −) for Survival in Permissive Sand Fly Vectors , 2010, PLoS neglected tropical diseases.

[37]  T. Dam,et al.  Single‐molecule pair studies of the interactions of the α‐GalNAc (Tn‐antigen) form of porcine submaxillary mucin with soybean agglutinin , 2009, Biopolymers.

[38]  S. Schedin,et al.  Dynamic force spectroscopy of the Helicobacter pylori BabA-Lewis b binding. , 2009, Biophysical chemistry.

[39]  P. Volf,et al.  Leishmania chitinase facilitates colonization of sand fly vectors and enhances transmission to mice , 2008, Cellular microbiology.

[40]  E. Linder,et al.  Schistosoma mansoni: chemoreception through n-acetyl-d-galactosamine-containing receptors in females offers insight into increased severity of schistosomiasis in individuals with blood group A. , 2008, Experimental parasitology.

[41]  P. Bates Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies , 2007, International journal for parasitology.

[42]  M. Rogers,et al.  Leishmania Manipulation of Sand Fly Feeding Behavior Results in Enhanced Transmission , 2007, PLoS pathogens.

[43]  P. Volf,et al.  Sand flies and Leishmania: specific versus permissive vectors. , 2007, Trends in parasitology.

[44]  Petr Volf,et al.  A lipophosphoglycan-independent development of Leishmania in permissive sand flies. , 2007, Microbes and infection.

[45]  Staffan Schedin,et al.  Measurements of the binding force between the Helicobacter pylori adhesin BabA and the Lewis b blood group antigen using optical tweezers. , 2005, Journal of biomedical optics.

[46]  Stéphane Cuenot,et al.  Nanoscale mapping and functional analysis of individual adhesins on living bacteria , 2005, Nature Methods.

[47]  C. Barillas-Mury,et al.  A Role for Insect Galectins in Parasite Survival , 2004, Cell.

[48]  M. Ferguson,et al.  Transmission of cutaneous leishmaniasis by sand flies is enhanced by regurgitation of fPPG , 2004, Nature.

[49]  B. Anvari,et al.  Measurement of Adhesive Forces between Individual Staphylococcus aureus MSCRAMMs and Protein-Coated Surfaces by Use of Optical Tweezers , 2003, Journal of bacteriology.

[50]  L. G. Evangelista,et al.  Histochemical Localization of N-Acetyl-Galactosamine in the Midgut of Lutzomyia longipalpis (Diptera: Psychodidae) , 2002, Journal of medical entomology.

[51]  M. Rogers,et al.  The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis , 2002, Parasitology.

[52]  J. M. de la Fuente,et al.  Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy. , 2001, Angewandte Chemie.

[53]  D. Sacks,et al.  Leishmania–sand fly interactions controlling species‐specific vector competence , 2001, Cellular microbiology.

[54]  S. Kamhawi,et al.  Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. , 2001, Annual review of microbiology.

[55]  T. Ilg Proteophosphoglycans of Leishmania. , 2000, Parasitology today.

[56]  S. Kamhawi,et al.  The vectorial competence of Phlebotomus sergenti is specific for Leishmania tropica and is controlled by species-specific, lipophosphoglycan-mediated midgut attachment , 2000, Parasitology.

[57]  T. Ilg Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana , 2000, The EMBO journal.

[58]  S. Beverley,et al.  The role of phosphoglycans in Leishmania-sand fly interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[59]  M. Vijayan,et al.  Molecular basis of recognition by Gal/GalNAc specific legume lectins: influence of Glu 129 on the specificity of peanut agglutinin (PNA) towards C2-substituents of galactose. , 1998, Glycobiology.

[60]  P. Qasba,et al.  Three dimensional structure of the soybean agglutinin Gal/GalNAc complexes by homology modeling. , 1998, Journal of biomolecular structure & dynamics.

[61]  R. Tesh,et al.  Host-parasite relationship of Leishmania mexicana mexicana and Lutzomyia abonnenci (Diptera: Psychodidae). , 1987, The American journal of tropical medicine and hygiene.

[62]  L. Sachs,et al.  Specific inhibition by N-acetyl-D-galactosamine of the interaction between soybean agglutinin and animal cell surfaces. , 1970, Biochimica et biophysica acta.

[63]  C. Garrett-Jones,et al.  Prognosis for Interruption of Malaria Transmission Through Assessment of the Mosquito's Vectorial Capacity , 1964, Nature.