Engineering the phase speed of surface‐plasmon wave at the planar interface of a metal and a chiral sculptured thin film

The solution of a boundary‐value problem formulated for a modified Kretschmann configuration shows that the phase speed of a surface‐plasmon wave guided by the planar interface of a sufficiently thin metal film and a chiral sculptured thin film (STF) depends on the vapor incidence angle used while fabricating the chiral STF by physical vapor deposition. Therefore, it may be possible to engineer the phase speed quite simply by selecting an appropriate value of the vapor deposition angle (in addition to the metal and the evaporant species). © 2008 Wiley Periodicals, Inc. Microwave Opt Technol Lett 50: 1966–1970, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.23511

[1]  A. Lakhtakia,et al.  Morphological effects on surface plasmon polaritons at the planar interface of a metal and a columnar thin film The Planar Interface Of A Metal And A Columnar Thin Film , 2007, 0708.2108.

[2]  A. Lakhtakia,et al.  Morphological influence on surface--wave propagation at the planar interface of a metal film and a columnar thin film , 2007, 0706.4300.

[3]  A. Lakhtakia Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium , 2007, 0706.1365.

[4]  J. M. Pitarke,et al.  Theory of surface plasmons and surface-plasmon polaritons , 2006, cond-mat/0611257.

[5]  C. Chang,et al.  Broadband RFID tag antenna with capacitively coupled structure , 2006 .

[6]  L. Ukkonen,et al.  Operability of Folded Microstrip Patch-Type Tag Antenna in the UHF RFID Bands Within 865-928 MHz , 2006, IEEE Antennas and Wireless Propagation Letters.

[7]  Tan-Phu Vuong,et al.  New design antenna for RFID UHF tags , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[8]  Dilip K. Paul,et al.  Sculptured Thin Films: Nanoengineered Morphology and Optics , 2005 .

[9]  F. Chiadini,et al.  Gaussian model for refractive indexes of columnar thin films and Bragg multilayers , 2004 .

[10]  R. Corn,et al.  Surface plasmon resonance imaging measurements of ultrathin organic films. , 2003, Annual review of physical chemistry.

[11]  A. Lakhtakia Pseudo‐isotropic and maximum‐bandwidth points for axially excited chiral sculptured thin films , 2002 .

[12]  Vijayakumar C. Venugopal,et al.  Origin and evolution of sculptured thin films , 2000 .

[13]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[14]  I. Hodgkinson,et al.  Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. , 1998, Applied optics.

[15]  Cock Lodder,et al.  Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data , 1994 .

[16]  Russell Messier,et al.  Revised structure zone model for thin film physical structure , 1984 .

[17]  M. S. Cohen,et al.  Oblique‐Incidence Anisotropy in Evaporated Permalloy Films , 1960 .

[18]  Ferrell Thin-foil surface-plasmon modification in scanning-probe microscopy. , 1994, Physical review. B, Condensed matter.

[19]  NIELS O. YOUNG,et al.  Optically Active Fluorite Films , 1959, Nature.

[20]  W. H. Toliver,et al.  Liquid Crystals , 1912, Nature.