Effect of temperature and gas velocity on growth per cycle during Al2O3 and ZnO atomic layer deposition at atmospheric pressure

The growth per cycle as a function of temperature during atomic layer deposition (ALD) of Al2O3 and ZnO at atmospheric pressure follows very closely the trend measured at typical (∼2 Torr) process pressure. However, the overall growth rate is found to be nearly 2 × larger at higher pressure and the magnitude of the growth increase can be adjusted by controlling the gas velocity near the growth surface. The growth increase at high pressure is approximately independent of process temperature at T   150 °C, especially for Al2O3. The relatively high growth/cycle measured at 760 Torr and T < 150 °C suggests that excess physisorbed water remains on the alumina or zinc oxide surface after the water purge step. Increasing the gas velocity in the growth zone reduces the growth rate, consistent with more efficient removal of excess water. To better understand the observed trends, we present analytical expressions for the boundary layer...

[1]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[2]  B. Mahltig,et al.  Functionalisation of textiles by inorganic sol–gel coatings , 2005 .

[3]  J. MacManus‐Driscoll,et al.  Reproducible growth of p-type ZnO:N using a modified atomic layer deposition process combined with dark annealing , 2008 .

[4]  Shelby Forrester Nelson,et al.  Stable ZnO thin film transistors by fast open air atomic layer deposition , 2008 .

[5]  J. Jur,et al.  Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[6]  Naoyuki Takahashi,et al.  Atmospheric Pressure Atomic Layer Epitaxy of ZnO Using a Chloride Source , 2001 .

[7]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[8]  S. Denbaars,et al.  Atmospheric pressure atomic layer epitaxy : mechanisms and applications , 1991 .

[9]  J. Jur,et al.  Temperature-dependent subsurface growth during atomic layer deposition on polypropylene and cellulose fibers. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[10]  A. Kitai,et al.  A novel atmospheric pressure technique for the deposition of ZnS by atomic layer epitaxy using dimethylzinc , 1988 .

[11]  Michael D. McGehee,et al.  Polymer-based solar cells , 2007 .

[12]  D. Cameron,et al.  An atomic layer deposition process for moving flexible substrates , 2011 .

[13]  T. Nakamura,et al.  Self-limiting growth of ZrO2 films on a Si(100) substrate using ZrCl4 and O2 under atmospheric pressure , 2003 .

[14]  Ganesh Sundaram,et al.  Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition , 2012 .

[15]  T. Nakamura,et al.  Preparation of HfO2 nano-films by atomic layer deposition using HfCl4 and O2 under atmospheric pressure , 2004 .

[16]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[17]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[18]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[19]  J. Jur,et al.  Atomic layer deposition of Al(2)O(3) and ZnO at atmospheric pressure in a flow tube reactor. , 2011, ACS applied materials & interfaces.

[20]  M. Ritala,et al.  In situ reaction mechanism studies on the atomic layer deposition of Al2O3 from (CH3)2AlCl and water. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[21]  Nicolas Schiller,et al.  Development of high barrier films on flexible polymer substrates , 2006 .

[22]  Fred Roozeboom,et al.  High‐Speed Spatial Atomic‐Layer Deposition of Aluminum Oxide Layers for Solar Cell Passivation , 2010, Advanced materials.

[23]  S. George,et al.  Progress and future directions for atomic layer deposition and ALD-based chemistry , 2011 .

[24]  S. George,et al.  Low-Temperature Al2O3 Atomic Layer Deposition , 2004 .

[25]  Steven M. George,et al.  Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry , 1997 .

[26]  Mikko Ritala,et al.  Effect of water dose on the atomic layer deposition rate of oxide thin films , 2000 .

[27]  T. Nakamura,et al.  Preparation of ZrO2 Nano-Films by an Alternate Reaction Using ZrCl4 and O 2 under Atmospheric Pressure , 2002 .

[28]  G. Parsons,et al.  “Zincone” Zinc Oxide−Organic Hybrid Polymer Thin Films Formed by Molecular Layer Deposition , 2009 .

[29]  T. Nakamura,et al.  Growth of HfO2 films using an alternate reaction of HfCl4 and O2 under atmospheric pressure , 2004 .

[30]  D. Lincot,et al.  Atomic layer deposition of zinc oxide and indium sulfide layers for Cu(In,Ga)Se2 thin-film solar cells , 2001 .

[31]  N. Yoshii,et al.  Atmospheric pressure atomic layer epitaxy of ZnO on a sapphire (0001) substrate by alternate reaction of ZnCl2 and O2 , 2000 .