Interior efficient solutions in bicriterion linear fractional programming-A geometric approach

A geometric approach to Linear Fractional Programming (LFP) is presented and extended to Bicriterion Linear Fractional Programming (BLFP). The general conditions for the BFLP to have interior efficient solutions are derived. It is shown that when they are satisfied, the interior efficient solutions form a hyperplane separating the points where the individual objective functions are optimized.

[1]  A. M. Geoffrion Proper efficiency and the theory of vector maximization , 1968 .

[2]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[3]  Derek Atkins,et al.  Multicriteria Programming for Financial Planning , 1979 .

[4]  E. Choo,et al.  Bicriteria linear fractional programming , 1982 .

[5]  Michael D. Intriligator,et al.  Mathematical optimization and economic theory , 1971 .

[6]  Eng Ung Choo,et al.  Technical Note - Proper Efficiency and the Linear Fractional Vector Maximum Problem , 1984, Oper. Res..

[7]  Gabriel R. Bitran,et al.  Linear Programming with a Fractional Objective Function , 1973, Oper. Res..

[8]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[9]  S. Schaible Fractional programming: Applications and algorithms , 1981 .

[10]  Werner Dinkelbach On Nonlinear Fractional Programming , 1967 .

[11]  A. Charnes,et al.  Goal programming and multiple objective optimizations: Part 1 , 1977 .

[12]  Abraham Charnes,et al.  Programming with linear fractional functionals , 1962 .

[13]  Ralph E. Gomory,et al.  A Linear Programming Approach to the Cutting Stock Problem---Part II , 1963 .

[14]  D. Chambers Programming the Allocation of Funds Subject to Restrictions on Reported Results , 1967 .

[15]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .