Very high temperature tiling of tetraphenylporphyrin on rutile TiO2(110).

We demonstrate the thermal stability up to 450 °C of a titanium(iv)-porphyrin monolayer grown on the rutile TiO2(110) surface. Starting from a film of metal-free tetra-phenyl-porphyrin, 2HTPP, deposited at room temperature, we show that, beyond the self-metalation reaction at 150°-200 °C, a second phase transition takes place at ∼350 °C. Using surface diffraction and microscopy, we observe a change of the phase symmetry from (2 × 4)-obliq to (2 × 6)-rect. Core level photoemission indicates that the chemical states of both the molecular tetrapyrrolic macrocycle and the substrate are unchanged. X-ray absorption spectroscopy reveals that the driving mechanism is a rotation of the phenyl terminations towards the substrate (flattening) that triggers a conformational change of the molecule through partial cyclo-dehydrogenation. From comparison with first principles calculations, we show that the common feature of these multiple phase transitions is the chemical nature of the porphyrin bonding atop the substrate oxygen rows: the coordination of the macrocycle central pocket to the oxygen atoms beneath is preserved throughout both the self-metalation and flattening reactions. The molecular orientation and arrangement are determined by steric constraints and intermolecular interactions, whereas the specific adsorption site is further stabilized by the interaction of the peripheral C-H network with the adjacent oxygen rows. Porphyrins are thus trapped at the TiO2(110) surface, where they demonstrate an exceptionally high thermal stability (up to ∼450 °C), which makes this interface potentially useful for sensors and photocatalysis applications in harsh environments.

[1]  M. Casarin,et al.  On-Surface Synthesis of a Pure and Long-Range-Ordered Titanium(IV)-Porphyrin Contact Layer on Titanium Dioxide , 2017, 2206.03175.

[2]  E. Meyer,et al.  Thermally induced anchoring of a zinc-carboxyphenylporphyrin on rutile TiO2 (110) , 2017 .

[3]  S. Goedecker,et al.  Hydroxyl-Induced Partial Charge States of Single Porphyrins on Titania Rutile , 2017 .

[4]  M. Franke,et al.  Hungry Porphyrins: Protonation and Self-Metalation of Tetraphenylporphyrin on TiO2(110) - 1 × 1 , 2016 .

[5]  E. Meyer,et al.  Self-assembling of Zn porphyrins on a (110) face of rutile TiO2–The anchoring role of carboxyl groups , 2016 .

[6]  D. Bratko,et al.  Dynamic Response in Nanoelectrowetting on a Dielectric. , 2016, ACS nano.

[7]  S. Rangan,et al.  Zinc(II) Tetraphenylporphyrin on Ag(100) and Ag(111): Multilayer Desorption and Dehydrogenation , 2016 .

[8]  J. Barth,et al.  In vacuo interfacial tetrapyrrole metallation. , 2016, Chemical Society reviews.

[9]  Fernando Flores,et al.  Densely-packed ZnTPPs Monolayer on the Rutile TiO2(110)-(1×1) Surface: Adsorption Behavior and Energy Level Alignment. , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[10]  Junfa Zhu,et al.  Metalation of tetraphenylporphyrin with nickel on a TiO2(110)-1 × 2 surface. , 2016, Nanoscale.

[11]  M. Casarin,et al.  Hydrogen capture by porphyrins at the TiO2(110) surface. , 2015, Physical chemistry chemical physics : PCCP.

[12]  J. M. Gottfried Surface chemistry of porphyrins and phthalocyanines , 2015 .

[13]  H. Marbach Surface-Mediated in Situ Metalation of Porphyrins at the Solid-Vacuum Interface. , 2015, Accounts of chemical research.

[14]  J. Barth,et al.  Surface-Assisted Cyclodehydrogenation; Break the Symmetry, Enhance the Selectivity. , 2015, Chemistry.

[15]  R. Acres,et al.  Immobilised molecular catalysts and the role of the supporting metal substrate. , 2015, Chemical communications.

[16]  María F. López,et al.  Densely Packed Perylene Layers on the Rutile TiO2(110)-(1 × 1) Surface , 2015 .

[17]  G. Fratesi,et al.  TiO2(110) Charge Donation to an Extended π-Conjugated Molecule. , 2015, The journal of physical chemistry letters.

[18]  A. Verdini,et al.  Massive Surface Reshaping Mediated by Metal–Organic Complexes , 2014 .

[19]  M. Franke,et al.  Insights in Reaction Mechanistics: Isotopic Exchange during the Metalation of Deuterated Tetraphenyl-21,23D-porphyrin on Cu(111) , 2014 .

[20]  A. Wee,et al.  Molecular Orientation and Site Dependent Charge Transfer Dynamics at PTCDA/TiO2(110) Interface Revealed by Resonant Photoemission Spectroscopy , 2014 .

[21]  J. Martín-Gago,et al.  Commensurate Growth of Densely Packed PTCDI Islands on the Rutile TiO2(110) Surface , 2013 .

[22]  C. Pignedoli,et al.  Room temperature metalation of 2H-TPP monolayer on iron and nickel surfaces by picking up substrate metal atoms. , 2012, ACS nano.

[23]  A. Verdini,et al.  Changes of the molecule-substrate interaction upon metal inclusion into a porphyrin. , 2012, Chemistry.

[24]  W. Piskorz,et al.  Supramolecular ordering of PTCDA molecules: the key role of dispersion forces in an unusual transition from physisorbed into chemisorbed state. , 2012, ACS nano.

[25]  Nobuyuki Ishida,et al.  Adsorption of Co-Phthalocyanine on the Rutile TiO2(110) Surface: A Scanning Tunneling Microscopy/Spectroscopy Study , 2012 .

[26]  C. Pignedoli,et al.  Supramolecular engineering through temperature-induced chemical modification of 2H-tetraphenylporphyrin on Ag(111): flat phenyl conformation and possible dehydrogenation reactions. , 2011, Chemistry.

[27]  A. Wee,et al.  Electronic Structure, Chemical Interactions and Molecular Orientations of 3,4,9,10-Perylene-tetracarboxylic-dianhydride on TiO2(110) , 2011 .

[28]  A. Vittadini,et al.  2D vs. 3D titanium dioxide: Role of dispersion interactions , 2011 .

[29]  A. Verdini,et al.  Following the Metalation Process of Protoporphyrin IX with Metal Substrate Atoms at Room Temperature , 2011 .

[30]  C. Sánchez-Sánchez,et al.  Planar Growth of Pentacene on the Dielectric TiO2(110) Surface , 2011 .

[31]  R. Osgood,et al.  Adsorption Geometry of Anthracene and 4-Bromobiphenyl on TiO2(110) Surfaces , 2010 .

[32]  W. Hieringer,et al.  Ordering aspects and intramolecular conformation of tetraphenylporphyrins on Ag(111). , 2010, Physical chemistry chemical physics : PCCP.

[33]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[34]  Vincenzo Barone,et al.  Role and effective treatment of dispersive forces in materials: Polyethylene and graphite crystals as test cases , 2009, J. Comput. Chem..

[35]  A. Verdini,et al.  Periodic Arrays of Cu-Phthalocyanine Chains on Au(110) , 2008 .

[36]  C. Africh,et al.  Pentacene nanorails on Au(110). , 2008, Langmuir : the ACS journal of surfaces and colloids.

[37]  N. Mårtensson,et al.  Scanning tunneling microscopy study of metal-free phthalocyanine monolayer structures on graphite. , 2007, The Journal of chemical physics.

[38]  F. Tautz Structure and bonding of large aromatic molecules on noble metal surfaces: The example of PTCDA , 2007 .

[39]  T. Nyokong,et al.  Comparative photocatalytic efficiency of oxotitanium(IV) phthalocyanines for the oxidation of 1-hexene , 2007 .

[40]  H. Steinrück,et al.  Interaction of Cobalt(II) Tetraarylporphyrins with a Ag(111) Surface Studied with Photoelectron Spectroscopy , 2007 .

[41]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[42]  Kai Wu,et al.  Adsorption and assembly of copper phthalocyanine on cross-linked TiO2(110)-(1 x 2) and TiO2(210). , 2006, The journal of physical chemistry. B.

[43]  C. Wöll,et al.  The adsorption of acenes on rutile TiO2(110): A multi-technique investigation , 2002 .

[44]  P. Esser Halogenated oxo- and peroxotitanium porphyrinates as sensitizers for the photooxygenation of olefinic compounds , 1999 .

[45]  P. Maillard,et al.  Photochemically induced olefin oxidation by titanyl and vanadyl porphyrins , 1987 .

[46]  J. Hutter,et al.  Non-innocent adsorption of Co-pyrphyrin on rutile(110). , 2015, Physical chemistry chemical physics : PCCP.