An Evaluation on Estimators for Stochastic and Heuristic Based Cost Functions Using the Epipolar-Constraint

Camera calibration is a process of optimizing the camera parameters. This paper describes an evaluation of different stochastic and heuristic estimators for cost function minimization used in camera calibration. The optimization algorithm is a standard gradient walk on the epipolarconstraint. The results show estimators work similar on the given set of correspondence. Correspondences selected to a given distribution over the frame gives better calibration results, especially the results on the yaw angle estimation show more robust results. In this paper the distribution will uniformly distributed over the frame using binning [1, 2]. The data used in this paper shows binning does lower the error behavior in most calibrations. The L1-norm and L2-norm using binning does not reach an error with respect to the ground truth higher 4 pix. The calibrations rejecting binning shows an impulse on the 970 calibration. To avoid this impulse binning is used. Binning influences the calibration result more as the choice of the right m-estimator or the right norm.

[1]  N. Draper,et al.  Applied Regression Analysis: Draper/Applied Regression Analysis , 1998 .

[2]  Lars Krüger Model based object classification and localisation in multiocular images , 2007 .

[3]  T. Dang,et al.  Stereo calibration in vehicles , 2004, IEEE Intelligent Vehicles Symposium, 2004.

[4]  Philip H. S. Torr,et al.  Outlier detection and motion segmentation , 1993, Other Conferences.

[5]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[6]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[7]  Gang Xu,et al.  Epipolar Geometry in Stereo, Motion and Object Recognition , 1996, Computational Imaging and Vision.

[8]  Björn Barrois Analyse der Position, Orientierung und Bewegung von rigiden und artikulierten Objekten aus Stereobildsequenzen , 2010 .

[9]  Andrew Zisserman,et al.  Multiple View Geometry in Computer Vision (2nd ed) , 2003 .

[10]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[11]  Olivier D. Faugeras,et al.  The fundamental matrix: Theory, algorithms, and stability analysis , 2004, International Journal of Computer Vision.

[12]  Christian Whler 3D Computer Vision: Efficient Methods and Applications , 2009 .

[13]  Fridtjof Stein,et al.  Efficient Computation of Optical Flow Using the Census Transform , 2004, DAGM-Symposium.

[14]  Richard Szeliski,et al.  Vision Algorithms: Theory and Practice , 2002, Lecture Notes in Computer Science.

[15]  Franz Kummert,et al.  Quality Measure in Epipolar Geometry for Vehicle Mounted Stereo Camera Systems , 2011 .

[16]  Christian Wöhler,et al.  3D Computer Vision , 2012 .

[17]  Thao Dang,et al.  Kontinuierliche Selbstkalibrierung von Stereokameras , 2009 .

[18]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.