Optimal Control and Numerical Adaptivity for Advection-Diffusion Equations

We propose a general approach for the numerical approximation of optimal control problems governed by a linear advection–diffusion equation, based on a stabilization method applied to the Lagrangian functional, rather than stabilizing the state and adjoint equations separately. This approach yields a coherently stabilized control problem. Besides, it allows a straightforward a posteriori error estimate in which estimates of higher order terms are needless. Our a posteriori estimates stems from splitting the error on the cost functional into the sum of an iteration error plus a discretization error. Once the former is reduced below a given threshold (and therefore the computed solution is “near” the optimal solution), the adaptive strategy is operated on the discretization error. To prove the effectiveness of the proposed methods, we report some numerical tests, referring to problems in which the control term is the source term of the advection–diffusion equation.

[1]  Ningning Yan,et al.  A posteriori error estimates for some model boundary control problems , 2000 .

[2]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[3]  Wenbin Liu,et al.  A Posteriori Error Estimates for Convex Boundary Control Problems , 2001, SIAM J. Numer. Anal..

[4]  Elijah Polak,et al.  Consistent Approximations and Approximate Functions and Gradients in Optimal Control , 2002, SIAM J. Control. Optim..

[5]  Ruo Li,et al.  Adaptive Finite Element Approximation for Distributed Elliptic Optimal Control Problems , 2002, SIAM J. Control. Optim..

[6]  J. Zolésio,et al.  Introduction to shape optimization : shape sensitivity analysis , 1992 .

[7]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[8]  O. Pironneau,et al.  Applied Shape Optimization for Fluids , 2001 .

[9]  Boris Polyak Methods for solving constrained extremum problems in the presence of random noise , 1979 .

[10]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[11]  A. Aziz,et al.  Control theory of systems governed by partial differential equations , 1977 .

[12]  S. Fomin,et al.  Elements of the Theory of Functions and Functional Analysis , 1961 .

[13]  Fausto Cavallaro Gestione della qualità dell’aria e reti di monitoraggio ambientale , 2002 .

[14]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[15]  Rolf Rannacher,et al.  Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept , 2000, SIAM J. Control. Optim..

[16]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[17]  Alexandre Ern,et al.  A Posteriori Control of Modeling Errors and Discretization Errors , 2003, Multiscale Model. Simul..

[18]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[19]  Marco Picasso,et al.  Anisotropic a posteriori error estimate for an optimal control problem governed by the heat equation , 2006 .

[20]  Wenbin Liu,et al.  A Posteriori Error Estimates for Distributed Convex Optimal Control Problems , 2001, Adv. Comput. Math..