Exact sparse matrix-vector multiplication on GPU's and multicore architectures

We propose different implementations of the sparse matrix-dense vector multiplication (SpMV) for finite fields and rings Z /m Z. We take advantage of graphic card processors (GPU) and multi-core architectures. Our aim is to improve the speed of SpMV in the LinBox library, and henceforth the speed of its black-box algorithms. Besides, we use this library and a new parallelisation of the sigma-basis algorithm in a parallel block Wiedemann rank implementation over finite fields.

[1]  Pavel Tvrdík,et al.  A New Approach for Accelerating the Sparse Matrix-Vector Multiplication , 2006, 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[2]  B. D. Saunders,et al.  Efficient matrix preconditioners for black box linear algebra , 2002 .

[3]  D. Coppersmith Solving homogeneous linear equations over GF (2) via block Wiedemann algorithm , 1994 .

[4]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.

[5]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[6]  William J. Turner,et al.  A block Wiedemann rank algorithm , 2006, ISSAC '06.

[7]  Jean-Guillaume Dumas,et al.  Finite field linear algebra subroutines , 2002, ISSAC '02.

[8]  Jean-Guillaume Dumas,et al.  Parallel computation of the rank of large sparse matrices from algebraic K-theory , 2007, PASCO '07.

[9]  Katherine Yelick,et al.  OSKI: A library of automatically tuned sparse matrix kernels , 2005 .

[10]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[11]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[12]  Ester M. Garzón,et al.  The sparse matrix vector product on GPUs , 2011 .

[13]  Hyun Jin Moon,et al.  Fast Sparse Matrix-Vector Multiplication by Exploiting Variable Block Structure , 2005, HPCC.

[14]  Jean-Guillaume Dumas,et al.  Dense Linear Algebra over Word-Size Prime Fields: the FFLAS and FFPACK Packages , 2006, TOMS.

[15]  Jean-Guillaume Dumas,et al.  Q-adic transform revisited , 2007, ISSAC '08.

[16]  Erich Kaltofen,et al.  Factoring high-degree polynomials by the black box Berlekamp algorithm , 1994, ISSAC '94.

[17]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[18]  John R. Gilbert,et al.  Parallel sparse matrix-vector and matrix-transpose-vector multiplication using compressed sparse blocks , 2009, SPAA '09.

[19]  Erich Kaltofen,et al.  Analysis of Coppersmith's Block Wiedemann Algorithm for the Parallel Solution of Sparse Linear Systems , 1993, AAECC.

[20]  G. Villard A study of Coppersmith's block Wiedemann algorithm using matrix polynomials , 1997 .

[21]  Michael Garland,et al.  Implementing sparse matrix-vector multiplication on throughput-oriented processors , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.