Turbulence model reduction by deep learning.

A central problem of turbulence theory is to produce a predictive model for turbulent fluxes. These have profound implications for virtually all aspects of the turbulence dynamics. In magnetic confinement devices, drift-wave turbulence produces anomalous fluxes via cross-correlations between fluctuations. In this work, we introduce an alternative, data-driven method for parametrizing these fluxes. The method uses deep supervised learning to infer a reduced mean-field model from a set of numerical simulations. We apply the method to a simple drift-wave turbulence system and find a significant new effect which couples the particle flux to the local gradient of vorticity. Notably, here, this effect is much stronger than the oft-invoked shear suppression effect. We also recover the result via a simple calculation. The vorticity gradient effect tends to modulate the density profile. In addition, our method recovers a model for spontaneous zonal flow generation by negative viscosity, stabilized by nonlinear and hyperviscous terms. We highlight the important role of symmetry to implementation of the alternative method.

[1]  L. Prandtl 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz , 1925 .

[2]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[3]  R. Sagdeev,et al.  Nonlinear oscillations of rarified plasma , 1961 .

[4]  O. Phillips The dynamics of the upper ocean , 1966 .

[5]  T. H. Dupree Nonlinear Theory of Drift‐Wave Turbulence and Enhanced Diffusion , 1967 .

[6]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .

[7]  A. Hasegawa,et al.  Stationary spectrum of strong turbulence in magnetized nonuniform plasma , 1977 .

[8]  P. C. W. Davies Theoretical astrophysics , 1979, Nature.

[9]  C. Barnes,et al.  A density rise experiment on PLT , 1982 .

[10]  Akira Hasegawa,et al.  Plasma Edge Turbulence , 1983 .

[11]  A. Hasegawa,et al.  A collisional drift wave description of plasma edge turbulence , 1984 .

[12]  Physical Review Letters 63 , 1989 .

[13]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[14]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[15]  B. M. Fulk MATH , 1992 .

[16]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[17]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[18]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[19]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[20]  T. Padmanabhan Theoretical Astrophysics by T. Padmanabhan , 2001 .

[21]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[22]  R. Dewar,et al.  Bifurcation in electrostatic resistive drift wave turbulence , 2007, 0708.4317.

[23]  P. B. Snyder,et al.  BOUT++: A framework for parallel plasma fluid simulations , 2008, Comput. Phys. Commun..

[24]  P. Diamond,et al.  On the validity of the local diffusive paradigm in turbulent plasma transport. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Boris B. Kadomtsev,et al.  Reviews of Plasma Physics , 2012 .

[26]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[27]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[28]  P. Diamond,et al.  Finding the elusive E×B staircase in magnetized plasmas. , 2015, Physical review letters.

[29]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[30]  Kimitaka Itoh,et al.  Towards an emerging understanding of non-locality phenomena and non-local transport , 2015 .

[31]  P. Diamond,et al.  How mesoscopic staircases condense to macroscopic barriers in confined plasma turbulence. , 2016, Physical review. E.

[32]  P. Diamond,et al.  On the emergence of macroscopic transport barriers from staircase structures , 2016 .

[33]  D. Hughes,et al.  Scale selection and feedback loops for patterns in drift wave-zonal flow turbulence , 2019, Plasma Physics and Controlled Fusion.

[34]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[35]  B. Grierson,et al.  Formation of a High Pressure Staircase Pedestal with Suppressed Edge Localized Modes in the DIII-D Tokamak. , 2019, Physical review letters.

[36]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[37]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.