Universal prediction of cell-cycle position using transfer learning

[1]  Anthony J. Cesnik,et al.  Spatiotemporal dissection of the cell cycle with single-cell proteogenomics , 2021, Nature.

[2]  Hannah A. Pliner,et al.  A human cell atlas of fetal gene expression , 2020, Science.

[3]  N. Rajewsky,et al.  The transcriptome dynamics of single cells during the cell cycle , 2019, bioRxiv.

[4]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[5]  K. Hansen,et al.  Precocious neuronal differentiation and disrupted oxygen responses in Kabuki syndrome. , 2019, JCI insight.

[6]  Brian S. Clark,et al.  Single-Cell RNA-Seq Analysis of Retinal Development Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification , 2019, Neuron.

[7]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[8]  Sheng Liu,et al.  Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species. , 2019, Cell systems.

[9]  John D. Blischak,et al.  Characterizing and inferring quantitative cell cycle phase in single-cell RNA-seq data analysis , 2019, bioRxiv.

[10]  D. J. Clarke,et al.  Cell cycle regulation of condensin Smc4 , 2019, Oncotarget.

[11]  Fabian J. Theis,et al.  Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis , 2019, Development.

[12]  Atsushi Miyawaki,et al.  Genetically Encoded Tools for Optical Dissection of the Mammalian Cell Cycle. , 2017, Molecular cell.

[13]  A. Oshlack,et al.  Splatter: simulation of single-cell RNA sequencing data , 2017, Genome Biology.

[14]  Michael Q. Zhang,et al.  Reconstructing cell cycle pseudo time-series via single-cell transcriptome data , 2017, Nature Communications.

[15]  Elena K. Kandror,et al.  Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development , 2017, Nature Biotechnology.

[16]  Wolfgang Losert,et al.  Cell Cycle and Cell Size Dependent Gene Expression Reveals Distinct Subpopulations at Single-Cell Level , 2017, Front. Genet..

[17]  Monika S. Kowalczyk,et al.  Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells , 2015, Genome research.

[18]  Sarah A Teichmann,et al.  Computational assignment of cell-cycle stage from single-cell transcriptome data. , 2015, Methods.

[19]  Ning Leng,et al.  Oscope identifies oscillatory genes in unsynchronized single cell RNA-seq experiments , 2015, Nature Methods.

[20]  A. Raj,et al.  Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. , 2015, Molecular cell.

[21]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[22]  V. Basile,et al.  Concurrent inhibition of enzymatic activity and NF-Y-mediated transcription of Topoisomerase-IIα by bis-DemethoxyCurcumin in cancer cells , 2013, Cell Death and Disease.

[23]  Jürg Bähler,et al.  Coordinating genome expression with cell size. , 2012, Trends in genetics : TIG.

[24]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[25]  Qiang Yang,et al.  Transfer Learning via Dimensionality Reduction , 2008, AAAI.

[26]  M. Stephens,et al.  Interpreting principal component analyses of spatial population genetic variation , 2008, Nature Genetics.

[27]  Atsushi Miyawaki,et al.  Visualizing Spatiotemporal Dynamics of Multicellular Cell-Cycle Progression , 2008, Cell.

[28]  Søren Brunak,et al.  Cyclebase.org—a comprehensive multi-organism online database of cell-cycle experiments , 2007, Nucleic Acids Res..

[29]  Ana Cumano,et al.  Ontogeny of the hematopoietic system. , 2007, Annual review of immunology.

[30]  Robert M. Gray,et al.  Toeplitz and Circulant Matrices: A Review , 2005, Found. Trends Commun. Inf. Theory.

[31]  C. Ball,et al.  Identification of genes periodically expressed in the human cell cycle and their expression in tumors. , 2002, Molecular biology of the cell.

[32]  D. Botstein,et al.  Singular value decomposition for genome-wide expression data processing and modeling. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[33]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[34]  V. Ambros,et al.  Cell cycle-dependent sequencing of cell fate decisions in Caenorhabditis elegans vulva precursor cells. , 1999, Development.

[35]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[36]  S. Mcconnell,et al.  Cell cycle dependence of laminar determination in developing neocortex. , 1992, Science.

[37]  W. Earnshaw,et al.  Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[38]  T. Hsing,et al.  Functional Data Analysis , 2015 .

[39]  V. Hu The Cell Cycle , 1994, GWUMC Department of Biochemistry Annual Spring Symposia.