Tagspin: High Accuracy Spatial Calibration of RFID Antennas via Spinning Tags

Recent years have witnessed the advance of RFID-based localization techniques that demonstrate high precision. Many efforts have been made locating RFID tags accurately with a mandatory assumption that the RFID reader's position is known in advance. Unfortunately, calibrating reader's location manually is always time-consuming and laborious in practice. In this paper, we present Tagspin, an approach using COTS tags to pinpoint the reader (antenna) quickly and easily with high accuracy. Tagspin enables each tag to emulate a circular antenna array by uniformly spinning on the edge of a rotating disk. We design an SAR-based method for estimating the angle spectrum of the target reader. Compared to previous AoA-based techniques, we employ an enhanced power profile modeling the relative signal power received from the reader along different spatial directions, which is more accurate and immune to ambient noise as well as measurement errors caused by hardware characteristics. Besides, we find that tag's phase measurements in practice are related to its <italic>orientation</italic>. To the best of our knowledge, we are the first to point out this fact and quantify the relationship between them. By calibrating the phase shifts caused by orientation, the positioning accuracy can be improved by <inline-formula><tex-math notation="LaTeX">$3.7\times$</tex-math><alternatives> <inline-graphic xlink:href="duan-ieq1-2796092.gif"/></alternatives></inline-formula>. We have implemented Tagspin with COTS RFID devices and evaluated it extensively. Experimental results show that Tagspin achieves mean accuracy of <inline-formula><tex-math notation="LaTeX">$7.3\; \mathrm{cm}$</tex-math><alternatives> <inline-graphic xlink:href="duan-ieq2-2796092.gif"/></alternatives></inline-formula> with standard deviation of <inline-formula><tex-math notation="LaTeX">$1.8\; \mathrm{cm}$</tex-math><alternatives> <inline-graphic xlink:href="duan-ieq3-2796092.gif"/></alternatives></inline-formula> in 3D space.

[1]  Polly Huang,et al.  Spinning beacons for precise indoor localization , 2008, SenSys '08.

[2]  Keqiu Li,et al.  A Multiple Hashing Approach to Complete Identification of Missing RFID Tags , 2014, IEEE Transactions on Communications.

[3]  Yunhao Liu,et al.  Relative Localization of RFID Tags using Spatial-Temporal Phase Profiling , 2015, NSDI.

[4]  Xiuwen Liu,et al.  Accurate localization of RFID tags using phase difference , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[5]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[6]  Moeness G. Amin,et al.  Localization and Tracking of Passive RFID Tags Based on Direction Estimation , 2007 .

[7]  Sachin Katti,et al.  PinPoint: Localizing Interfering Radios , 2013, NSDI.

[8]  Jie Xiong,et al.  ArrayTrack: A Fine-Grained Indoor Location System , 2011, NSDI.

[9]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[10]  Lei Yang,et al.  Season: Shelving interference and joint identification in large-scale RFID systems , 2011, 2011 Proceedings IEEE INFOCOM.

[11]  Ross A. Knepper,et al.  RF-compass: robot object manipulation using RFIDs , 2013, MobiCom.

[12]  Anshul Rai,et al.  Zee: zero-effort crowdsourcing for indoor localization , 2012, Mobicom '12.

[13]  Lei Yang,et al.  Accurate Spatial Calibration of RFID Antennas via Spinning Tags , 2016, 2016 IEEE 36th International Conference on Distributed Computing Systems (ICDCS).

[14]  Gang Li,et al.  Bandwidth dependence of CW ranging to UHF RFID tags in severe multipath environments , 2011, 2011 IEEE International Conference on RFID.

[15]  Lei Yang,et al.  Tagoram: real-time tracking of mobile RFID tags to high precision using COTS devices , 2014, MobiCom.

[16]  R. King Electromagnetic waves and antennas above and below the surface of the earth , 1979 .

[17]  Lei Yang,et al.  Fusing RFID and computer vision for fine-grained object tracking , 2017, IEEE INFOCOM 2017 - IEEE Conference on Computer Communications.

[18]  Ales Povalac,et al.  Phase difference of arrival distance estimation for RFID tags in frequency domain , 2011, 2011 IEEE International Conference on RFID-Technologies and Applications.

[19]  Lei Yang,et al.  Anchor-free backscatter positioning for RFID tags with high accuracy , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[20]  Lei Yang,et al.  Frogeye: Perception of the slightest tag motion , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[21]  Keqiu Li,et al.  Efficient Unknown Tag Identification Protocols in Large-Scale RFID Systems , 2014, IEEE Transactions on Parallel and Distributed Systems.

[22]  K. V. S. Rao,et al.  Phase based spatial identification of UHF RFID tags , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[23]  Jue Wang,et al.  Dude, where's my card?: RFID positioning that works with multipath and non-line of sight , 2013, SIGCOMM.

[24]  M. Matsumoto,et al.  RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering , 2007 .

[25]  G.D. Durgin,et al.  Complete Link Budgets for Backscatter-Radio and RFID Systems , 2009, IEEE Antennas and Propagation Magazine.

[26]  Chong Wang,et al.  RFID-Based 3-D Positioning Schemes , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[27]  Markus Cremer,et al.  New measurement results for the localization of UHF RFID transponders using an Angle of Arrival (AoA) approach , 2011, 2011 IEEE International Conference on RFID.

[28]  Yunhao Liu,et al.  VIRE: Active RFID-based Localization Using Virtual Reference Elimination , 2007, 2007 International Conference on Parallel Processing (ICPP 2007).

[29]  Swarun Kumar,et al.  Accurate indoor localization with zero start-up cost , 2014, MobiCom.

[30]  Lei Yang,et al.  Making sense of mechanical vibration period with sub-millisecond accuracy using backscatter signals , 2016, MobiCom.

[31]  Yunhao Liu,et al.  OTrack: Order tracking for luggage in mobile RFID systems , 2013, 2013 Proceedings IEEE INFOCOM.

[32]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[33]  Keqiu Li,et al.  Completely Pinpointing the Missing RFID Tags in a Time-Efficient Way , 2015, IEEE Transactions on Computers.

[34]  Dina Katabi,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2014, S3@MobiCom.

[35]  Jue Wang,et al.  RF-IDraw: virtual touch screen in the air using RF signals , 2015, SIGCOMM 2015.

[36]  Martin Vossiek,et al.  Holographic localization of passive UHF RFID transponders , 2011, 2011 IEEE International Conference on RFID.

[37]  M. Bouet,et al.  RFID tags: Positioning principles and localization techniques , 2008, 2008 1st IFIP Wireless Days.

[38]  M. Vossiek,et al.  Inverse SAR approach for localization of moving RFID tags , 2013, 2013 IEEE International Conference on RFID (RFID).

[39]  R.C. Luo,et al.  RFID-based Indoor Antenna Localization System using Passive Tag and Variable RF-Attenuation , 2007, IECON 2007 - 33rd Annual Conference of the IEEE Industrial Electronics Society.

[40]  Andreas Stelzer,et al.  Localization of passive UHF RFID tags based on inverse synthetic apertures , 2014, 2014 IEEE International Conference on RFID (IEEE RFID).