Human factors in automatic image retrieval system design and evaluation

Image retrieval is a human-centered task: images are created by people and are ultimately accessed and used by people for human-related activities. In designing image retrieval systems and algorithms, or measuring their performance, it is therefore imperative to consider the conditions that surround both the indexing of image content and the retrieval. This includes examining the different levels of interpretation for retrieval, possible search strategies, and image uses. Furthermore, we must consider different levels of similarity and the role of human factors such as culture, memory, and personal context. This paper takes a human-centered perspective in outlining levels of description, types of users, search strategies, image uses, and human factors that affect the construction and evaluation of automatic content-based retrieval systems, such as human memory, context, and subjectivity.

[1]  Amanda Spink,et al.  Real life information retrieval: a study of user queries on the Web , 1998, SIGF.

[2]  Yvonne Rogers,et al.  Cognitive strategies in web searching. , 1999 .

[3]  Shih-Fu Chang,et al.  Conceptual structures and computational methods for indexing and organization of visual information , 2003 .

[4]  Raya Fidel,et al.  The image retrieval task: implications for the design and evaluation of image databases , 1997, New Rev. Hypermedia Multim..

[5]  Kerry Rodden,et al.  How do people manage their digital photographs? , 2003, CHI '03.

[6]  Amanda Spink,et al.  Penn State's Visual Image User Study , 2001, D-Lib Magazine.

[7]  Kazutaka Hirata,et al.  Memory cues for meeting video retrieval , 2004, CARPE'04.

[8]  Deirdre C. Stam,et al.  Artists and art libraries , 1995, Art Libraries Journal.

[9]  Sara Shatford Layne,et al.  Some Issues in the Indexing of Images , 1994, J. Am. Soc. Inf. Sci..

[10]  Howard Greisdorf Information Seeking Behaviour in Image Retrieval: VISOR I Final Report , 2002, J. Documentation.

[11]  Simon King,et al.  Towards context-aware face recognition , 2005, MULTIMEDIA '05.

[12]  Simone Santini,et al.  Emergent Semantics through Interaction in Image Databases , 2001, IEEE Trans. Knowl. Data Eng..

[13]  Henry A Michael J James Michael Pisciotta,et al.  Penn State's Visual Image User Study , 2001, D Lib Mag..

[14]  John Tait,et al.  Search strategies in content-based image retrieval , 2003, SIGIR.

[15]  Alexander G. Hauptmann,et al.  The Use and Utility of High-Level Semantic Features in Video Retrieval , 2005, CIVR.

[16]  Daniel E. Rose,et al.  Understanding user goals in web search , 2004, WWW '04.

[17]  Ga Young,et al.  Technical Advisory Service for Images , 2004 .

[18]  Gary Marchionini,et al.  Information Seeking in Electronic Environments , 1995 .

[19]  John R. Smith,et al.  Semi-automatic, data-driven construction of multimedia ontologies , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[20]  Zhenyu Liu,et al.  Automatic identification of user goals in Web search , 2005, WWW '05.

[21]  Nicholas J. Belkin,et al.  Evaluating interactive information retrieval systems: opportunities and challenges , 2004, CHI EA '04.

[22]  Marcel Worring,et al.  Classification of user image descriptions , 2004, Int. J. Hum. Comput. Stud..

[23]  Stefano Mizzaro,et al.  Evaluating user interfaces to information retrieval systems: a case study on user support , 1996, SIGIR '96.

[24]  S. Yang Qualitative exploration of learner's information-seeking processes using Perseus hypermedia system , 1997 .

[25]  Corinne Jörgensen,et al.  Image querying by image professionals: Research Articles , 2005 .

[26]  Marcel Worring,et al.  User Strategies in Video Retrieval: A Case Study , 2004, CIVR.

[27]  Shu Ching Yang,et al.  Qualitative Exploration of Learners' Information-Seeking Processes Using Perseus Hypermedia System , 1997, Journal of the American Society for Information Science.

[28]  Shih-Fu Chang,et al.  Conceptual framework for indexing visual information at multiple levels , 1999, Electronic Imaging.

[29]  Sara Shatford Layne Artists, Art Historians, and Visual Art Information , 1994 .

[30]  Corinne Jörgensen,et al.  Image querying by image professionals , 2005, J. Assoc. Inf. Sci. Technol..

[31]  B. Shneiderman,et al.  Motivating Annotation for Personal Digital Photo Libraries : Lowering Barriers While Raising Incentives , 2022 .

[32]  Gary Marchionini,et al.  Interfaces for End-User Information Seeking , 1992, J. Am. Soc. Inf. Sci..