Pointwise decay for the wave equation on nonstationary spacetimes
暂无分享,去创建一个
[1] D. Tataru,et al. Global parametrices and dispersive estimates for variable coefficient wave equations , 2007, 0707.1191.
[2] T. Chmaj,et al. Linear and nonlinear tails II: exact decay rates in spherical symmetry , 2007, 0712.0493.
[3] I. Rodnianski,et al. A new physical-space approach to decay for the wave equation with applications to black hole spacetimes , 2009, 0910.4957.
[4] Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.
[5] J. Ralston. Solutions of the wave equation with localized energy , 1969 .
[6] Hart F. Smith,et al. Global strichartz estimates for nonthapping perturbations of the laplacian , 1999, math/9912204.
[7] J. Bony,et al. The Semilinear Wave Equation on Asymptotically Euclidean Manifolds , 2008, 0810.0464.
[8] S. Aretakis,et al. Late-time asymptotics for the wave equation on extremal Reissner–Nordström backgrounds , 2018, Advances in Mathematics.
[9] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[10] I. Rodnianski,et al. Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M , 2014, 1402.7034.
[11] Jason Metcalfe,et al. Long-Time Existence of Quasilinear Wave Equations Exterior to Star-Shaped Obstacles via Energy Methods , 2006, SIAM J. Math. Anal..
[12] C. Sogge,et al. Concerning the wave equation on asymptotically Euclidean manifolds , 2008, 0901.0022.
[13] Cathleen S. Morawetz,et al. Time decay for the nonlinear Klein-Gordon equation , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[14] Walter A. Strauss,et al. Dispersal of waves vanishing on the boundary of an exterior domain , 1975 .
[15] M. Grillakis. Regularity and asymptotic behavior of the wave equation with a critical nonlinearity , 1990 .
[16] Jan Sbierski. Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes , 2013, 1311.2477.
[17] On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background , 2009, 0911.3179.
[18] S. Alinhac. On the Morawetz-Keel-Smith-Sogge Inequality for the Wave Equation on a Curved Background , 2006 .
[19] L. Andersson,et al. Hidden symmetries and decay for the wave equation on the Kerr spacetime , 2009, 0908.2265.
[20] D. Tataru,et al. Decay estimates for variable coefficient wave equations in exterior domains , 2008, 0806.3409.
[21] N. Burq,et al. Global Strichartz Estimates for Nontrapping Geometries: About an Article by H. Smith and C. Sogge , 2002, math/0210277.
[22] Richard H. Price,et al. Nonspherical perturbations of relativistic gravitational collapse , 1971 .
[23] N. Szpak. Simple proof of a useful pointwise estimate for the wave equation , 2007, 0708.2801.
[24] M. Tohaneanu,et al. Global existence for quasilinear wave equations close to Schwarzschild , 2016, Communications in Partial Differential Equations.
[25] Thomas C. Sideris. Nonresonance and global existence of prestressed nonlinear elastic waves , 2000 .
[26] Angular Regularity and Strichartz Estimates for the Wave Equation , 2004, math/0402192.
[27] Georgios Moschidis. The $$r^{p}$$rp-Weighted Energy Method of Dafermos and Rodnianski in General Asymptotically Flat Spacetimes and Applications , 2015, 1509.08489.
[28] M. Zworski,et al. Semiclassical resolvent estimates in chaotic scattering , 2009, 0904.2986.
[29] P. Hintz. A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes , 2020, Communications in Mathematical Physics.
[30] Danna Zhou,et al. d. , 1840, Microbial pathogenesis.
[31] R. Booth,et al. Localized energy for wave equations with degenerate trapping , 2017, Mathematical Research Letters.
[32] W. Marsden. I and J , 2012 .
[33] S. Aretakis. Decay of Axisymmetric Solutions of the Wave Equation on Extreme Kerr Backgrounds , 2011, 1110.2006.
[34] Jared Wunsch,et al. Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes , 2021, Mathematical Research Letters.
[35] D. Tataru,et al. Local energy decay for scalar fields on time dependent non-trapping backgrounds , 2017, American Journal of Mathematics.
[36] Mihalis Dafermos,et al. The Red-shift effect and radiation decay on black hole spacetimes , 2005 .
[37] Mihai Tohaneanu,et al. Scattering for critical wave equations with variable coefficients , 2019, Proceedings of the Edinburgh Mathematical Society.
[38] Shiwu Yang. Global behaviors of defocusing semilinear wave equations , 2019, Annales scientifiques de l'École Normale Supérieure.
[39] M. Tohaneanu,et al. A Local Energy Estimate on Kerr Black Hole Backgrounds , 2008, 0810.5766.
[40] M. Tohaneanu,et al. A Local Energy Estimate for Wave Equations on Metrics Asymptotically Close to Kerr , 2020, Annales Henri Poincaré.
[41] Jacob Sterbenz,et al. A vector field method for radiating black hole spacetimes , 2017, Analysis & PDE.
[42] M. Tohaneanu,et al. Strichartz Estimates on Schwarzschild Black Hole Backgrounds , 2008, 0802.3942.
[43] R. Price,et al. Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .
[44] K. Morgan. The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting , 2020, American Journal of Mathematics.
[45] H. Christianson. Dispersive Estimates for Manifolds with One Trapped Orbit , 2006, math/0611845.
[46] Luis Vega,et al. On the Zakharov and Zakharov-Schulman Systems , 1995 .
[47] G. Fitzgerald,et al. 'I. , 2019, Australian journal of primary health.
[48] D. Tataru. Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.
[49] M. Tohaneanu,et al. Price's Law on Nonstationary Space-Times , 2011, 1104.5437.
[50] M. Zworski,et al. Resolvent Estimates for Normally Hyperbolic Trapped Sets , 2010, 1003.4640.