Pointwise decay for the wave equation on nonstationary spacetimes

The first of a two-part series, this paper assumes a weak local energy decay estimate holds and proves that solutions to the linear wave equation with variable coefficients in R, first-order terms, and a potential decay at a rate depending on how rapidly the vector fields of the metric, first-order terms, and potential decay at spatial infinity. We prove results for both stationary and nonstationary metrics. The proof uses local energy decay to prove an initial decay rate, and then uses the one-dimensional reduction repeatedly to achieve the full decay rate.

[1]  D. Tataru,et al.  Global parametrices and dispersive estimates for variable coefficient wave equations , 2007, 0707.1191.

[2]  T. Chmaj,et al.  Linear and nonlinear tails II: exact decay rates in spherical symmetry , 2007, 0712.0493.

[3]  I. Rodnianski,et al.  A new physical-space approach to decay for the wave equation with applications to black hole spacetimes , 2009, 0910.4957.

[4]  Global Existence for the Einstein Vacuum Equations in Wave Coordinates , 2003, math/0312479.

[5]  J. Ralston Solutions of the wave equation with localized energy , 1969 .

[6]  Hart F. Smith,et al.  Global strichartz estimates for nonthapping perturbations of the laplacian , 1999, math/9912204.

[7]  J. Bony,et al.  The Semilinear Wave Equation on Asymptotically Euclidean Manifolds , 2008, 0810.0464.

[8]  S. Aretakis,et al.  Late-time asymptotics for the wave equation on extremal Reissner–Nordström backgrounds , 2018, Advances in Mathematics.

[9]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[10]  I. Rodnianski,et al.  Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case |a| < M , 2014, 1402.7034.

[11]  Jason Metcalfe,et al.  Long-Time Existence of Quasilinear Wave Equations Exterior to Star-Shaped Obstacles via Energy Methods , 2006, SIAM J. Math. Anal..

[12]  C. Sogge,et al.  Concerning the wave equation on asymptotically Euclidean manifolds , 2008, 0901.0022.

[13]  Cathleen S. Morawetz,et al.  Time decay for the nonlinear Klein-Gordon equation , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[14]  Walter A. Strauss,et al.  Dispersal of waves vanishing on the boundary of an exterior domain , 1975 .

[15]  M. Grillakis Regularity and asymptotic behavior of the wave equation with a critical nonlinearity , 1990 .

[16]  Jan Sbierski Characterisation of the energy of Gaussian beams on Lorentzian manifolds: with applications to black hole spacetimes , 2013, 1311.2477.

[17]  On Pointwise Decay of Linear Waves on a Schwarzschild Black Hole Background , 2009, 0911.3179.

[18]  S. Alinhac On the Morawetz-Keel-Smith-Sogge Inequality for the Wave Equation on a Curved Background , 2006 .

[19]  L. Andersson,et al.  Hidden symmetries and decay for the wave equation on the Kerr spacetime , 2009, 0908.2265.

[20]  D. Tataru,et al.  Decay estimates for variable coefficient wave equations in exterior domains , 2008, 0806.3409.

[21]  N. Burq,et al.  Global Strichartz Estimates for Nontrapping Geometries: About an Article by H. Smith and C. Sogge , 2002, math/0210277.

[22]  Richard H. Price,et al.  Nonspherical perturbations of relativistic gravitational collapse , 1971 .

[23]  N. Szpak Simple proof of a useful pointwise estimate for the wave equation , 2007, 0708.2801.

[24]  M. Tohaneanu,et al.  Global existence for quasilinear wave equations close to Schwarzschild , 2016, Communications in Partial Differential Equations.

[25]  Thomas C. Sideris Nonresonance and global existence of prestressed nonlinear elastic waves , 2000 .

[26]  Angular Regularity and Strichartz Estimates for the Wave Equation , 2004, math/0402192.

[27]  Georgios Moschidis The $$r^{p}$$rp-Weighted Energy Method of Dafermos and Rodnianski in General Asymptotically Flat Spacetimes and Applications , 2015, 1509.08489.

[28]  M. Zworski,et al.  Semiclassical resolvent estimates in chaotic scattering , 2009, 0904.2986.

[29]  P. Hintz A Sharp Version of Price’s Law for Wave Decay on Asymptotically Flat Spacetimes , 2020, Communications in Mathematical Physics.

[30]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[31]  R. Booth,et al.  Localized energy for wave equations with degenerate trapping , 2017, Mathematical Research Letters.

[32]  W. Marsden I and J , 2012 .

[33]  S. Aretakis Decay of Axisymmetric Solutions of the Wave Equation on Extreme Kerr Backgrounds , 2011, 1110.2006.

[34]  Jared Wunsch,et al.  Generalized Price’s law on fractional-order asymptotically flat stationary spacetimes , 2021, Mathematical Research Letters.

[35]  D. Tataru,et al.  Local energy decay for scalar fields on time dependent non-trapping backgrounds , 2017, American Journal of Mathematics.

[36]  Mihalis Dafermos,et al.  The Red-shift effect and radiation decay on black hole spacetimes , 2005 .

[37]  Mihai Tohaneanu,et al.  Scattering for critical wave equations with variable coefficients , 2019, Proceedings of the Edinburgh Mathematical Society.

[38]  Shiwu Yang Global behaviors of defocusing semilinear wave equations , 2019, Annales scientifiques de l'École Normale Supérieure.

[39]  M. Tohaneanu,et al.  A Local Energy Estimate on Kerr Black Hole Backgrounds , 2008, 0810.5766.

[40]  M. Tohaneanu,et al.  A Local Energy Estimate for Wave Equations on Metrics Asymptotically Close to Kerr , 2020, Annales Henri Poincaré.

[41]  Jacob Sterbenz,et al.  A vector field method for radiating black hole spacetimes , 2017, Analysis & PDE.

[42]  M. Tohaneanu,et al.  Strichartz Estimates on Schwarzschild Black Hole Backgrounds , 2008, 0802.3942.

[43]  R. Price,et al.  Nonspherical Perturbations of Relativistic Gravitational Collapse. I. Scalar and Gravitational Perturbations , 1972 .

[44]  K. Morgan The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting , 2020, American Journal of Mathematics.

[45]  H. Christianson Dispersive Estimates for Manifolds with One Trapped Orbit , 2006, math/0611845.

[46]  Luis Vega,et al.  On the Zakharov and Zakharov-Schulman Systems , 1995 .

[47]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[48]  D. Tataru Local decay of waves on asymptotically flat stationary space-times , 2009, 0910.5290.

[49]  M. Tohaneanu,et al.  Price's Law on Nonstationary Space-Times , 2011, 1104.5437.

[50]  M. Zworski,et al.  Resolvent Estimates for Normally Hyperbolic Trapped Sets , 2010, 1003.4640.