Synthesis, magnetic and transport properties of HTP-Ni3Sn2 single crystals obtained by the chemical vapor transport method

Here, we report the synthesis, magnetic properties and transport properties of HTP-Ni3Sn2 single crystals. The magnetic measurements reveal that HTP-Ni3Sn2 has a paramagnetic temperature dependence and the c axis has a stronger magnetic interaction. Despite the existence of strong antiferromagnetic interactions, the long range magnetic order is not observed due to the geometrical frustration. Moreover, the sublinear temperature dependence of the resistivity is presented, which is attributed to short-range correlations among the geometrical frustration. Our study suggests that the geometrical frustration has an important influence on the physical properties of HTP-Ni3Sn2.

[1]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[2]  Qi Wang,et al.  Anomalous Hall effect in a ferromagnetic Fe 3 Sn 2 single crystal with a geometrically frustrated Fe bilayer kagome lattice , 2016, 1610.04970.

[3]  Young S. Lee,et al.  Do quantum spin liquids exist , 2016 .

[4]  M. Norman Colloquium : Herbertsmithite and the search for the quantum spin liquid , 2016, 1604.03048.

[5]  T. Higo,et al.  Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature , 2015, Nature.

[6]  H. Löhneysen,et al.  Large topological Hall effect in the non-collinear phase of an antiferromagnet , 2014, Nature Communications.

[7]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[8]  S. Calder,et al.  Measurement of the charge and current of magnetic monopoles in spin ice , 2009, Nature.

[9]  Y. Maeno,et al.  Critical behavior of the metallic triangular-lattice Heisenberg antiferromagnet PdCrO 2 , 2009, 0903.5206.

[10]  L. Balents,et al.  Spin-orbital singlet and quantum critical point on the diamond lattice: FeSc2S4. , 2008, Physical review letters.

[11]  R. Moessner,et al.  Magnetic monopoles in spin ice , 2007, Nature.

[12]  P. Roussel,et al.  A new investigation of the system Ni–Sn , 2007 .

[13]  E. .. Mittemeijer,et al.  Kinetics of ordering in Ni1.50Sn (‘Ni3Sn2’) as revealed by the variation of the lattice parameters upon annealing , 2007 .

[14]  Barbara Goss Levi,et al.  New candidate emerges for a quantum spin liquid , 2007 .

[15]  Y. Maeno,et al.  Unconventional anomalous Hall effect enhanced by a noncoplanar spin texture in the frustrated Kondo lattice Pr2Ir2O7. , 2007, Physical review letters.

[16]  M. Gingras,et al.  Dynamically induced frustration as a route to a quantum spin ice state in Tb2Ti2O7 via virtual crystal field excitations and quantum many-body effects. , 2006, Physical review letters.

[17]  Toni Feder,et al.  Historic observatory sale , 2006 .

[18]  A. Loidl,et al.  Spin and orbital frustration in MnSc2S4 and FeSc2S4. , 2004, Physical review letters.

[19]  Y. Tokura,et al.  Magnetic field induced sign reversal of the anomalous Hall effect in a pyrochlore ferromagnet Nd2Mo2O7: evidence for a spin chirality mechanism. , 2003, Physical review letters.

[20]  N. Nagaosa,et al.  Spin Chirality, Berry Phase, and Anomalous Hall Effect in a Frustrated Ferromagnet , 2001, Science.

[21]  R. Moessner,et al.  Properties of a classical spin liquid: the Heisenberg pyrochlore antiferromagnet , 1997, cond-mat/9712063.

[22]  G. F. Zhou,et al.  Nonequilibrium phase transformation and magnetic properties of Ni3Sn2 during mechanical milling , 1993 .

[23]  L. Forró,et al.  Magnetoresistance of the organic superconductor bis-tetramethyltetraselenafulvalenium perchlorate [(TMTSF) 2 ClO 4 ]: Kohler's rule , 1984 .

[24]  Kiyoo Sato,et al.  Temperature Dependence of Electrical Resistivity in Ferromagnetic GdNi Single Crystal , 1980 .

[25]  T. Kasuya Electrical Resistance of Ferromagnetic Metals , 1956 .