Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids.

[1]  Juan Tang,et al.  Gold nanoparticles-decorated amine-terminated poly(amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. , 2011, Biosensors & bioelectronics.

[2]  Yu Qin,et al.  Functional nanoprobes for ultrasensitive detection of biomolecules. , 2010, Chemical Society reviews.

[3]  S. Shinkai,et al.  Fabrication of silica nanotubes by using self-assembled gels and their applications in environmental and biological fields. , 2010, Chemical Society reviews.

[4]  Minghui Yang,et al.  Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. , 2010, Biosensors & bioelectronics.

[5]  Jing He,et al.  Dumbbell-like Au-Fe3O4 nanoparticles as label for the preparation of electrochemical immunosensors. , 2010, Biosensors & bioelectronics.

[6]  Zhiqiang Gao,et al.  Pt nanoparticle label-mediated deposition of Pt catalyst for ultrasensitive electrochemical immunosensors. , 2010, Biosensors & bioelectronics.

[7]  Dan Wu,et al.  Electrochemical immunosensor for norethisterone based on signal amplification strategy of graphene sheets and multienzyme functionalized mesoporous silica nanoparticles. , 2010, Biosensors & bioelectronics.

[8]  Cai-Hong Liu,et al.  Chemical approaches towards single-species single-walled carbon nanotubes. , 2010, Nanoscale.

[9]  Ying Zhuo,et al.  An electrochemical enzyme bioaffinity electrode based on biotin-streptavidin conjunction and bienzyme substrate recycling for amplification. , 2010, Analytical biochemistry.

[10]  J. Riu,et al.  Electrochemical sensing based on carbon nanotubes , 2010 .

[11]  Juan Tang,et al.  Nanogold-actuated biomimetic peroxidase for sensitized electrochemical immunoassay of carcinoembryonic antigen in human serum. , 2010, Analytica chimica acta.

[12]  Juan Tang,et al.  Ultrasensitive electrochemical immunoassay of staphylococcal enterotoxin B in food using enzyme-nanosilica-doped carbon nanotubes for signal amplification. , 2010, Journal of agricultural and food chemistry.

[13]  Itamar Willner,et al.  Biomolecule-based nanomaterials and nanostructures. , 2010, Nano letters.

[14]  Ying Zhuo,et al.  Horseradish peroxidase-functionalized Pt hollow nanospheres and multiple redox probes as trace labels for a sensitive simultaneous multianalyte electrochemical immunoassay. , 2010, Chemical communications.

[15]  Juan Tang,et al.  Conductive carbon nanoparticles-based electrochemical immunosensor with enhanced sensitivity for alpha-fetoprotein using irregular-shaped gold nanoparticles-labeled enzyme-linked antibodies as signal improvement. , 2010, Biosensors & bioelectronics.

[16]  Yun Xiang,et al.  Sensitive label-free immunoassay of carcinoembryonic antigen based on Au-TiO2 hybrid nanocomposite film. , 2010, Journal of colloid and interface science.

[17]  Ping He,et al.  Nanosilver-doped DNA polyion complex membrane for electrochemical immunoassay of carcinoembryonic antigen using nanogold-labeled secondary antibodies. , 2010, Analytica chimica acta.

[18]  Honglei Guo,et al.  Carbon nanotubes noncovalently functionalized by an organic-inorganic hybrid: new building blocks for constructing superhydrophobic conductive coatings. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[19]  Xizeng Feng,et al.  Fabrication of mesoporous silica-coated CNTs and application in size-selective protein separation , 2010 .

[20]  Jianlong Zhao,et al.  Novel colorimetric enzyme immunoassay for the detection of carcinoembryonic antigen. , 2010, Talanta.

[21]  Zhimin Zhang,et al.  Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. , 2010, Biosensors & bioelectronics.

[22]  Jaebeom Lee,et al.  Functionalization effects of single-walled carbon nanotubes as templates for the synthesis of silica nanorods and study of growing mechanism of silica. , 2010, ACS nano.

[23]  Y. Chai,et al.  A novel label-free electrochemical immunosensor for carcinoembryonic antigen detection based on the [Ag–Ag2O]/SiO2 nanocomposite material as a redox probe , 2010 .

[24]  Huiling Gao,et al.  An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles. , 2010, Analytica chimica acta.

[25]  B. Rigas,et al.  Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses , 2010 .

[26]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[27]  Y. Chai,et al.  Reverse-micelle synthesis of electrochemically encoded quantum dot barcodes: application to electronic coding of a cancer marker. , 2010, Analytical chemistry.

[28]  Juan Tang,et al.  Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. , 2010, Analytical chemistry.

[29]  Feng Yan,et al.  Dual signal amplification of glucose oxidase-functionalized nanocomposites as a trace label for ultrasensitive simultaneous multiplexed electrochemical detection of tumor markers. , 2009, Analytical chemistry.

[30]  Song Zhang,et al.  Protein chips and nanomaterials for application in tumor marker immunoassays. , 2009, Biosensors & bioelectronics.

[31]  M. El‐Kady,et al.  Poly(3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: Voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen. , 2009, Talanta.

[32]  Reinhard Niessner,et al.  Review: bioanalytical applications of biomolecule-functionalized nanometer-sized doped silica particles. , 2009, Analytica chimica acta.

[33]  R. Niessner,et al.  Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food. , 2009, The Analyst.

[34]  T. S. Chmilenko,et al.  Potentiometric membrane sensors for polyvinylpyrrolidone determination. , 2009, Talanta.

[35]  M. Pumera,et al.  Ultrathin organically modified silica layer coated carbon nanotubes: fabrication, characterization and electrical insulating properties. , 2009, Chemistry, an Asian journal.

[36]  J. Ho,et al.  Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. , 2009, Biosensors & bioelectronics.

[37]  Pi-Tai Chou,et al.  Carbon nanoparticle-enhanced immunoelectrochemical detection for protein tumor marker with cadmium sulfide biotracers. , 2009, Analytical chemistry.

[38]  W. Dungchai,et al.  Salmonella typhi determination using voltammetric amplification of nanoparticles: A highly sensitive strategy for metalloimmunoassay based on a copper-enhanced gold label , 2008 .

[39]  S. Khokhar,et al.  Electrochemical creatinine biosensors. , 2008, Analytical chemistry.

[40]  Dianping Tang,et al.  In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. , 2008, Analytical chemistry.

[41]  P. Skládal,et al.  Electrochemical biosensors - principles and applications , 2008 .

[42]  Ruo Yuan,et al.  Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. , 2008, Analytical chemistry.

[43]  Sara Tombelli,et al.  Biosensors for biomarkers in medical diagnostics , 2008 .

[44]  Yuehe Lin,et al.  Nanomaterial labels in electrochemical immunosensors and immunoassays. , 2007, Talanta.

[45]  E. Wang,et al.  A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial nanocable , 2007 .

[46]  Yan Liu,et al.  Ultrasensitive potentiometric immunosensor based on SA and OCA techniques for immobilization of HBsAb with colloidal Au and polyvinyl butyral as matrixes. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[47]  R. Mendelsohn,et al.  IR Reflectance — Absorbance Studies of Peptide Structure, Orientation, and Conformational Flexibility in Langmuir Films: Relevance for Models of Pulmonary Surfactant Action , 2006 .