Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations

SUMMARY Most loci identified by GWAS have been found in populations of European ancestry (EA). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EA individuals, we identified 5,552 trait-variant associations at P<5×10−9, including 71 novel loci not found in EA populations. We also identified novel ancestry-specific variants not found in EA, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional, and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EA-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations, and compared genetic architecture and the impact of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.

William J. Astle | Andrew D. Johnson | P. Elliott | J. Danesh | A. Reiner | T. Lehtimäki | T. Hansen | O. Pedersen | N. Grarup | Hua Tang | M. Kanai | Y. Kamatani | Y. Okada | W. Ouwehand | N. Watkins | H. Völzke | P. Wilson | A. Zonderman | M. Evans | K. Matsuda | O. Raitakari | Yongmei Liu | B. Psaty | C. Lareau | T. Esko | S. Karthikeyan | Michael H. Preuss | K. Mohlke | Yun Li | G. Lettre | J. Rotter | J. Brody | J. Tardif | N. Soranzo | U. Völker | N. Mononen | E. Bottinger | S. Rich | J. Howson | M. Kähönen | T. Bartz | A. Correa | Jingzhong Ding | E. Evangelou | M. Ghanbari | T. Kacprowski | Y. Ben-Shlomo | D. Heel | K. Hunt | J. Bork-Jensen | R. Loos | L. Lyytikäinen | M. Guo | E. Angelantonio | A. Butterworth | P. Auer | A. Linneberg | M. Nauck | M. Lerch | Bingshan Li | Erik L. Bao | Ming-Huei Chen | K. S. Lo | G. Nadkarni | J. Haessler | L. Broer | L. Lange | K. Nikus | P. Surendran | R. Trembath | C. Chiang | Wei Huang | A. Manichaikul | N. Dimou | T. Jiang | D. Roberts | N. Pankratz | Kelly Cho | E. Jorgenson | S. Sakaue | M. Akiyama | A. Greinacher | J. Huffman | H. Choquet | Y. Murakami | A. Moscati | X. Zhong | L. Raffield | P. Schubert | Regina Manansala | Huijun Qian | V. Sankaran | Q. Huang | H. Martin | J. Floyd | D. Vuckovic | A. Beswick | M. Beaudoin | F. V. Rooij | C. Spracklen | Jonathan D. Rosen | Michael H Preuss | P. Akbari | A. Mousas | K. Chitrala | F. Koskeridis | B. Rodriguez | Véronique Laplante | Minhui Chen | J. Gauchat | B. Trivedi | P. Elliott | Yun Li | S. Rich | Wei Huang | Peter W F Wilson | O. Raitakari | A. Johnson | V. Laplante | Frank J.A. van Rooij | Hua Tang

[1]  H. Saito,et al.  Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. , 2009, Blood.

[2]  N. Amariglio,et al.  The Duffy antigen receptor for chemokines, ACKR1,– ‘Jeanne DARC’ of benign neutropenia , 2018, British journal of haematology.

[3]  Y. Kamatani,et al.  Overview of the BioBank Japan Project: Study design and profile , 2017, Journal of epidemiology.

[4]  A. J. Slater,et al.  Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. , 2016, American journal of human genetics.

[5]  Marcelo P. Segura-Lepe,et al.  Rare and low-frequency coding variants alter human adult height , 2016, Nature.

[6]  T. Manolio,et al.  Genetic Variants That Confer Resistance to Malaria Are Associated with Red Blood Cell Traits in African-Americans: An Electronic Medical Record-based Genome-Wide Association Study , 2013, G3: Genes, Genomes, Genetics.

[7]  Marylyn D. Ritchie,et al.  PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations , 2010, Bioinform..

[8]  N. Martin,et al.  Genetic and environmental causes of variation in basal levels of blood cells , 1999, Twin Research.

[9]  Brielin C. Brown,et al.  Transethnic genetic correlation estimates from summary statistics , 2016, bioRxiv.

[10]  Alan M. Kwong,et al.  Next-generation genotype imputation service and methods , 2016, Nature Genetics.

[11]  Alkes L. Price,et al.  Multi-ethnic polygenic risk scores improve risk prediction in diverse populations , 2016, bioRxiv.

[12]  Alicia R. Martin,et al.  Clinical use of current polygenic risk scores may exacerbate health disparities , 2019, Nature Genetics.

[13]  Jacob C. Ulirsch,et al.  Common α-globin variants modify hematologic and other clinical phenotypes in sickle cell trait and disease , 2018, PLoS genetics.

[14]  Benjamin A. Logsdon,et al.  Imputation of exome sequence variants into population- based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project. , 2012, American journal of human genetics.

[15]  Asan,et al.  Sequencing of 50 Human Exomes Reveals Adaptation to High Altitude , 2010, Science.

[16]  Jon Wakefield,et al.  A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.

[17]  Julie A. Lynch,et al.  Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in Genome-wide Association Studies. , 2019, American journal of human genetics.

[18]  P. Deloukas,et al.  Patterns of Cis Regulatory Variation in Diverse Human Populations , 2012, PLoS genetics.

[19]  He Gao,et al.  Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. , 2016, American journal of human genetics.

[20]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[21]  Kathryn S. Burch,et al.  Leveraging polygenic functional enrichment to improve GWAS power , 2017, bioRxiv.

[22]  L. Berthiaume,et al.  Wnt acylation: seeing is believing. , 2014, Nature chemical biology.

[23]  Carol West,et al.  Hematologic differences between African-Americans and whites: the roles of iron deficiency and alpha-thalassemia on hemoglobin levels and mean corpuscular volume. , 2005, Blood.

[24]  Judy H. Cho,et al.  Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations , 2015, Nature Genetics.

[25]  Walter Palmas,et al.  Genetic association analysis highlights new loci that modulate hematological trait variation in Caucasians and African Americans , 2011, Human Genetics.

[26]  G. Brusselle,et al.  Prostaglandin D2 receptor antagonism: a novel therapeutic option for eosinophilic asthma? , 2016, The Lancet. Respiratory medicine.

[27]  Marcelo P. Segura-Lepe,et al.  PROTEIN-CODING VARIANTS IMPLICATE NOVEL GENES RELATED TO LIPID HOMEOSTASIS CONTRIBUTING TO BODY FAT DISTRIBUTION , 2018, Nature Genetics.

[28]  Jon Wakefield,et al.  Bayes factors for genome‐wide association studies: comparison with P‐values , 2009, Genetic epidemiology.

[29]  Brielin C. Brown,et al.  Comparative genetic architectures of schizophrenia in East Asian and European populations , 2018, Nature Genetics.

[30]  Lars G Fritsche,et al.  Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies , 2017, Nature Genetics.

[31]  Stephanie A. Bien,et al.  Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.

[32]  Eric S. Lander,et al.  Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms , 2016, Proceedings of the National Academy of Sciences.

[33]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[34]  Zoltán Kutalik,et al.  Quality control and conduct of genome-wide association meta-analyses , 2014, Nature Protocols.

[35]  Ashley P Ng,et al.  Thrombocytopenia and CD34 expression is decoupled from α‐granule deficiency with mutation of the first growth factor‐independent 1B zinc finger , 2017, Journal of thrombosis and haemostasis : JTH.

[36]  T. Burns,et al.  Quantitative trait locus linkage analysis in a large Amish pedigree identifies novel candidate loci for erythrocyte traits , 2013, Molecular genetics & genomic medicine.

[37]  Ningjia He,et al.  Evolutionary and functional analysis of mulberry type III polyketide synthases , 2016, BMC Genomics.

[38]  P. Zhu,et al.  The Polymorphisms in LNK Gene Correlated to the Clinical Type of Myeloproliferative Neoplasms , 2016, PLoS ONE.

[39]  B. Weir,et al.  ESTIMATING F‐STATISTICS FOR THE ANALYSIS OF POPULATION STRUCTURE , 1984, Evolution; international journal of organic evolution.

[40]  H. Kang,et al.  Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.

[41]  A. Reiner,et al.  Generalizing polygenic risk scores from Europeans to Hispanics/Latinos , 2018, Genetic epidemiology.

[42]  D. Gudbjartsson,et al.  Variants in ELL2 influencing immunoglobulin levels associate with multiple myeloma , 2015, Nature Communications.

[43]  Andrew D. Johnson,et al.  Rare coding variants pinpoint genes that control human hematological traits , 2017, PLoS genetics.

[44]  Joshua C. Denny,et al.  R PheWAS: data analysis and plotting tools for phenome-wide association studies in the R environment , 2014, Bioinform..

[45]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[46]  Po-Ru Loh,et al.  Fast and accurate long-range phasing in a UK Biobank cohort , 2015, Nature Genetics.

[47]  M. Nalls,et al.  Reduced Neutrophil Count in People of African Descent Is Due To a Regulatory Variant in the Duffy Antigen Receptor for Chemokines Gene , 2009, PLoS genetics.

[48]  O. Delaneau,et al.  Supplementary Information for ‘ Improved whole chromosome phasing for disease and population genetic studies ’ , 2012 .

[49]  Y. Colin,et al.  Red cell adhesion in human diseases , 2014, Current opinion in hematology.

[50]  Jake K. Byrnes,et al.  Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.

[51]  Yujiang Fang,et al.  The role of IL-7 in Immunity and Cancer. , 2017, Anticancer Research.

[52]  A. Reiner,et al.  Common α-globin variants modify hematologic and other clinical phenotypes in sickle cell trait and disease , 2018, PLoS Genetics.

[53]  Kathleen F. Kerr,et al.  Genome-wide Association Study of Platelet Count Identifies Ancestry-Specific Loci in Hispanic/Latino Americans. , 2016, American journal of human genetics.

[54]  M. McCarthy,et al.  Cohort Profile: East London Genes & Health (ELGH), a community-based population genomics and health study in British Bangladeshi and British Pakistani people , 2019, International journal of epidemiology.

[55]  F. He,et al.  Molecular Population Genetics of Human CYP3A Locus: Signatures of Positive Selection and Implications for Evolutionary Environmental Medicine , 2009, Environmental Health Perspectives.

[56]  Manuel A. R. Ferreira,et al.  The Contribution of the Functional IL6R Polymorphism rs2228145, eQTLs and Other Genome-Wide SNPs to the Heritability of Plasma sIL-6R Levels , 2014, Behavior Genetics.

[57]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[58]  Sina A. Gharib,et al.  Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis , 2018, bioRxiv.

[59]  Y. Li,et al.  Trans-ethnic genome-wide association studies: advantages and challenges of mapping in diverse populations , 2014, Genome Medicine.

[60]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[61]  Po-Ru Loh,et al.  Multi-ethnic polygenic risk scores improve risk prediction in diverse populations , 2016, bioRxiv.

[62]  M. Oosting,et al.  Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. , 2010, American journal of human genetics.

[63]  Benjamin M. Neale,et al.  Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium , 2015 .

[64]  Manik Kuchroo,et al.  Common risk alleles for inflammatory diseases are targets of recent positive selection. , 2013, American journal of human genetics.

[65]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[66]  Anthony J. Payne,et al.  Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps , 2018, Nature Genetics.

[67]  A. J. Slater,et al.  Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases. , 2016, American journal of human genetics.

[68]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[69]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[70]  Vence L Bonham,et al.  The Clinical Imperative for Inclusivity: Race, Ethnicity, and Ancestry (REA) in Genomics , 2018, bioRxiv.

[71]  R. Mägi,et al.  Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution , 2017, Human molecular genetics.

[72]  B. Voight,et al.  Patterns of shared signatures of recent positive selection across human populations , 2017, Nature Ecology & Evolution.

[73]  Tanya M. Teslovich,et al.  Genetics of Blood Lipids Among ~300,000 Multi-Ethnic Participants of the Million Veteran Program , 2018, Nature Genetics.

[74]  M. Daly,et al.  An Atlas of Genetic Correlations across Human Diseases and Traits , 2015, Nature Genetics.

[75]  L. Scott,et al.  Fine-Mapping of Type 2 Diabetes Loci , 2016 .

[76]  William J. Astle,et al.  The Polygenic and Monogenic Basis of Blood Traits and Diseases , 2020, Cell.

[77]  P. Visscher,et al.  Title: Across-cohort Qc Analyses of Genome-wide Association Study Summary Statistics from Complex Traits Wray 1 , the Genetic Investigation of Anthropometric Traits (giant) Consortium , 2015 .

[78]  D. Lin Genetic Association Analysis , 2014 .

[79]  K. Rawlik,et al.  An atlas of genetic associations in UK Biobank , 2017, Nature Genetics.

[80]  Joachim Hermisson,et al.  EVOLUTION OF GENETIC ARCHITECTURE UNDER DIRECTIONAL SELECTION , 2006, Evolution; international journal of organic evolution.

[81]  S. Burstein,et al.  Interleukin 6 is a differentiation factor for human megakaryocytes in vitro , 1990, European Journal of Immunology.

[82]  David Reich,et al.  Phasing of many thousands of genotyped samples. , 2012, American journal of human genetics.

[83]  Martin J. Aryee,et al.  Interrogation of human hematopoiesis at single-cell and single-variant resolution , 2018, Nature Genetics.

[84]  O. Castro,et al.  Hemoglobin S and C traits: contributing causes for decreased mean hematocrit in African-American children. , 1993, Pediatrics.

[85]  D. Roden,et al.  Development of a Large‐Scale De‐Identified DNA Biobank to Enable Personalized Medicine , 2008, Clinical pharmacology and therapeutics.

[86]  William J. Astle,et al.  Allelic Landscape of Human Blood Cell Trait Variation and Links , 2016 .

[87]  Michael J. Kearsey,et al.  Genetical Analysis of Quantitative Traits , 2020 .

[88]  Mary Brophy,et al.  Million Veteran Program: A mega-biobank to study genetic influences on health and disease. , 2016, Journal of clinical epidemiology.

[89]  Alan M. Kwong,et al.  A reference panel of 64,976 haplotypes for genotype imputation , 2015, Nature Genetics.

[90]  G. Semenza,et al.  A genetic mechanism for Tibetan high-altitude adaptation , 2014, Nature Genetics.

[91]  A. Wolberg,et al.  Red blood cells in thrombosis. , 2017, Blood.

[92]  Deepak L. Bhatt,et al.  Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta‐analysis , 2010, Journal of thrombosis and haemostasis : JTH.

[93]  Joel Hirschhorn,et al.  SNPsnap: a Web-based tool for identification and annotation of matched SNPs , 2015, Bioinform..

[94]  S. Fullerton,et al.  Genomics is failing on diversity , 2016, Nature.

[95]  Po-Ru Loh,et al.  Mixed-model association for biobank-scale datasets , 2018, Nature Genetics.

[96]  Yi Peng,et al.  Identification of a Tibetan-specific mutation in the hypoxic gene EGLN1 and its contribution to high-altitude adaptation. , 2013, Molecular biology and evolution.