Advanced Antenna Fabrication Processes (MEMS/LTCC/LCP/Printing)

The future of wireless technology is stressing the development of ubiquitous, low-cost, highly specialized wireless devices, where both the design and fabrication of wireless antennas have an essential role. This chapter presents four modern fabrication processes used for the development of advanced wireless antenna structures, both present and emerging: MEMS, LTCC, LCP, and ink-jet/three-dimensional printing. Each fabrication technique is investigated historically and analytically, discussing early achievements, process development, and several state-of-the-art demonstrations. The strengths and challenges of these additive and subtractive methods are highlighted, outlining the cost, processing time, scalability, and dimensional resolution of each method. Throughout the discussion of these electronic fabrication techniques, an emphasis is placed on the realization of highly efficient, robust antenna structures for a variety of applications, including conformal sensor networks, radar systems, low-cost RFID, and on-chip/ on-package integration.

[1]  B. Farrell,et al.  The processing of liquid crystalline polymer printed circuits , 2002, 52nd Electronic Components and Technology Conference 2002. (Cat. No.02CH37345).

[2]  M. Madou Fundamentals of microfabrication : the science of miniaturization , 2002 .

[3]  M. Tentzeris,et al.  RF MEMS Sequentially Reconfigurable Sierpinski Antenna on a Flexible Organic Substrate With Novel DC-Biasing Technique , 2007, Journal of Microelectromechanical Systems.

[4]  Gabriel M. Rebeiz,et al.  MEMS-switched reconfigurable antennas , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[5]  Heli Jantunen,et al.  Low loss dielectric materials for LTCC applications: a review , 2008 .

[6]  Wenjing Su,et al.  A novel inkjet-printed microfluidic tunable coplanar patch antenna , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[7]  I. Koh,et al.  Package-level integrated antennas based on LTCC technology , 2006, IEEE Transactions on Antennas and Propagation.

[8]  R. Rumpf,et al.  Broadband Microwave Frequency Characterization of 3-D Printed Materials , 2013, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[9]  C. Grigoropoulos,et al.  All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles , 2007 .

[10]  Li Yang,et al.  RFID Tag and RF Structures on a Paper Substrate Using Inkjet-Printing Technology , 2007, IEEE Transactions on Microwave Theory and Techniques.

[11]  M.M. Tentzeris,et al.  A V-band front-end with 3-D integrated cavity filters/duplexers and antenna in LTCC technologies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[12]  Jo Bito,et al.  Fully inkjet-printed multilayer microstrip patch antenna for Ku-band applications , 2014, 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[13]  Li Yang,et al.  Design of a novel high-efficiency UHF RFID antenna on flexible LCP substrate with high read-range capability , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[14]  R. Kulke,et al.  Technology Benchmarking of High Resolution Structures on LTCC for Microwave Circuits , 2006, 2006 1st Electronic Systemintegration Technology Conference.

[15]  G. Kovacs,et al.  Bulk micromachining of silicon , 1998, Proc. IEEE.

[16]  Farshid Aryanfar,et al.  Exploring Liquid Crystal Polymer (LCP) substrates for mm-Wave antennas in portable devices , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[17]  S. Bhattacharya,et al.  Liquid Crystal Polymer (LCP): The ultimate solution for low-cost RF flexible electronics and antennas , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[18]  Paul I. Deffenbaugh,et al.  3D Printed Electromagnetic Transmission And Electronic Structures Fabricated On A Single Platform Using Advanced Process Integration Techniques , 2014 .

[19]  S. Yeates,et al.  Inkjet printing of 3D metal-insulator-metal crossovers , 2008 .

[20]  A. Lamminen,et al.  60-GHz Patch Antennas and Arrays on LTCC With Embedded-Cavity Substrates , 2008, IEEE Transactions on Antennas and Propagation.

[21]  J. Papapolymerou,et al.  Liquid Crystal polymer (LCP): a new organic material for the development of multilayer dual-frequency/dual-polarization flexible antenna arrays , 2005, IEEE Antennas and Wireless Propagation Letters.

[22]  M. Tentzeris,et al.  Design and Development of a Novel 3-D Cubic Antenna for Wireless Sensor Networks (WSNs) and RFID Applications , 2009, IEEE Transactions on Antennas and Propagation.

[23]  R. Howe,et al.  Polycrystalline Silicon Micromechanical Beams , 1983 .

[24]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[25]  Shichai Chen,et al.  Compact Dual-Band GPS Microstrip Antenna Using Multilayer LTCC Substrate , 2010, IEEE Antennas and Wireless Propagation Letters.

[26]  M. Tentzeris,et al.  Multi-Layer RF Capacitors on Flexible Substrates Utilizing Inkjet Printed Dielectric Polymers , 2013, IEEE Microwave and Wireless Components Letters.

[27]  B. S. Cook,et al.  Fully inkjet-printed multilayer microstrip and T-resonator structures for the RF characterization of printable materials and interconnects , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[28]  Manos M. Tentzeris,et al.  Post-process fabrication of multilayer mm-wave on-package antennas with inkjet printing , 2015, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[29]  R. Wicker,et al.  Multiple Material Micro-Fabrication: Extending Stereolithography to Tissue Engineering and Other Novel Applications , 2004 .

[30]  S. Nikolaou,et al.  CPW-fed ultra wideband (UWB) monopoles with band rejection characteristic on ultra thin organic substrate , 2006, 2006 Asia-Pacific Microwave Conference.

[31]  Bo Cui,et al.  Recent Advances in Nanofabrication Techniques and Applications , 2011 .

[32]  Xudong Chen,et al.  Fully 3D Printed 2.4 GHz Bluetooth/Wi-Fi Antenna , 2013 .

[33]  M. Sun,et al.  100-GHz Quasi-Yagi Antenna in Silicon Technology , 2007, IEEE Electron Device Letters.

[34]  Shlomo Magdassi,et al.  The Chemistry of Inkjet Inks , 2009 .

[35]  M. Tentzeris,et al.  Integrated printing for 2D/3D flexible organic electronic devices , 2015 .

[36]  Gary P. Wiederrecht,et al.  Handbook of nanofabrication , 2010 .

[37]  Manos M. Tentzeris,et al.  Multilayer Inkjet Printing of Millimeter-Wave Proximity-Fed Patch Arrays on Flexible Substrates , 2013, IEEE Antennas and Wireless Propagation Letters.

[38]  Naoki Morita,et al.  Ejection Characteristics and Drop Modulation of Acoustic Inkjet Printing Using Fresnel Lens , 2009 .

[39]  G. Ponchak,et al.  Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz , 2004, IEEE Transactions on Microwave Theory and Techniques.

[40]  Wenjing Su,et al.  Low-cost microfluidics-enabled tunable loop antenna using inkjet-printing technologies , 2015, 2015 9th European Conference on Antennas and Propagation (EuCAP).

[41]  A. Shamim,et al.  Inkjet Printing of Novel Wideband and High Gain Antennas on Low-Cost Paper Substrate , 2012, IEEE Transactions on Antennas and Propagation.

[42]  J. Bu,et al.  Monolithically integrated micromachined RF MEMS capacitive switches , 2001 .

[43]  Yunnan Fang,et al.  Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper , 2013, Electronic Materials Letters.

[44]  J. Bustillo,et al.  Surface micromachining for microelectromechanical systems , 1998, Proc. IEEE.