Plant growth promoting rhizobia: challenges and opportunities

[1]  P. Reddy Recent advances in crop protection , 2016, Springer India.

[2]  K. N. Tiwari,et al.  Evaluation of plant growth promoting activities of microbial strains and their effect on growth and yield of chickpea (Cicer arietinum L.) in India , 2014 .

[3]  J. Chi,et al.  Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil , 2014, Plant and Soil.

[4]  A. Alexandre,et al.  Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. , 2014, Microbiological research.

[5]  B. Glick Bacteria with ACC deaminase can promote plant growth and help to feed the world. , 2014, Microbiological research.

[6]  D. Maheshwari,et al.  Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L , 2013, Pharmacognosy magazine.

[7]  M. S. Khan,et al.  Nickel Detoxification and Plant Growth Promotion by Multi Metal Resistant Plant Growth Promoting Rhizobium Species RL9 , 2013, Bulletin of Environmental Contamination and Toxicology.

[8]  J. Verma,et al.  Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture , 2013 .

[9]  H. Padh,et al.  Hairy root cultures: A suitable biological system for studying secondary metabolic pathways in plants , 2013 .

[10]  M. M. Lucas,et al.  Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils , 2012 .

[11]  Bernard R. Glick,et al.  Plant Growth-Promoting Bacteria: Mechanisms and Applications , 2012, Scientifica.

[12]  L. Luo,et al.  Effects of Engineered Sinorhizobium meliloti on Cytokinin Synthesis and Tolerance of Alfalfa to Extreme Drought Stress , 2012, Applied and Environmental Microbiology.

[13]  Babu Joseph,et al.  Characterization of plant growth promoting rhizobacteria associated with chickpea (Cicer arietinum L.) , 2012 .

[14]  P. N. Bhattacharyya,et al.  Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture , 2012, World journal of microbiology & biotechnology.

[15]  M. S. Khan,et al.  Bioremediation of Lead by a Plant Growth Promoting Rhizobium Species RL9 , 2012 .

[16]  B. Glick,et al.  Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene , 2012, Plant and Soil.

[17]  G. O’Hara,et al.  Enhanced nodulation and symbiotic effectiveness of Medicago truncatula when co-inoculated with Pseudomonas fluorescens WSM3457 and Ensifer (Sinorhizobium) medicae WSM419 , 2011, Plant and Soil.

[18]  Poonam Sharma,et al.  Effect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.) , 2011 .

[19]  M. S. Khan,et al.  Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils , 2011, Symbiosis.

[20]  M. S. Khan,et al.  Effect of tebuconazole-tolerant and plant growth promoting Rhizobium isolate MRP1 on pea-Rhizobium symbiosis , 2011 .

[21]  C. Cornea,et al.  Effects of Heavy Metal from Polluted Soils on the Rhizobium Diversity , 2011 .

[22]  B. Venkateswarlu,et al.  Role of microorganisms in adaptation of agriculture crops to abiotic stresses , 2011 .

[23]  M. S. Khan,et al.  Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. , 2011, Pest management science.

[24]  J. Vanderleyden,et al.  Auxin and plant-microbe interactions. , 2011, Cold Spring Harbor perspectives in biology.

[25]  M. Prasad,et al.  Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. , 2011, Biotechnology advances.

[26]  M. S. Khan,et al.  Effect of Pesticides on Plant Growth Promoting Traits of Greengram-Symbiont, Bradyrhizobium sp. strain MRM6 , 2011, Bulletin of environmental contamination and toxicology.

[27]  M. S. Khan,et al.  Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lensesculentus)-specific Rhizobium sp. strain MRL3 , 2011, Ecotoxicology.

[28]  M. S. Khan,et al.  Plant-Growth-Promoting Fungicide-Tolerant Rhizobium Improves Growth and Symbiotic Characteristics of Lentil (Lensesculentus) in Fungicide-Applied Soil , 2011, Journal of Plant Growth Regulation.

[29]  M. Ahemad,et al.  Ameliorative effects of Mesorhizobium sp. MRC4 on chickpea yield and yield components under different doses of herbicide stress , 2010 .

[30]  Z. Zahir,et al.  Substrate-dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. , 2010, Journal of microbiology and biotechnology.

[31]  M. S. Khan,et al.  Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species , 2010, Annals of Microbiology.

[32]  Pingfang Yang,et al.  Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021 , 2010, Proteomics.

[33]  M. S. Khan,et al.  Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum , 2010 .

[34]  M. Pullen International Food Policy Research Institute (IFPRI) Financial Statements and Report of Independent Auditors as of December 31, 2009 , 2010 .

[35]  M. Prasad,et al.  Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. , 2010, Trends in biotechnology.

[36]  R. Turner,et al.  Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. , 2010, FEMS microbiology ecology.

[37]  M. Saraf,et al.  Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants , 2010 .

[38]  D. Maheshwari,et al.  Effect of Heavy Metals on Growth of Rhizobium Strains and Symbiotic Efficiency of Two Species of Tropical Legumes , 2010 .

[39]  M. Sadowsky,et al.  Functional Role of Bradyrhizobium japonicum Trehalose Biosynthesis and Metabolism Genes during Physiological Stress and Nodulation , 2009, Applied and Environmental Microbiology.

[40]  M. S. Khan,et al.  Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils , 2009, Journal of Crop Science and Biotechnology.

[41]  R. Mhamdi,et al.  The diversity of rhizobia nodulating chickpea (Cicer arietinum) under water deficiency as a source of more efficient inoculants , 2009 .

[42]  M. Megias,et al.  Symbiotic performance of common bean and soybean co-inoculated with rhizobia and Chryseobacterium balustinum Aur9 under moderate saline conditions , 2009, Symbiosis.

[43]  Takashi Watanabe,et al.  Biological nitrification inhibition by Brachiaria humidicola roots varies with soil type and inhibits nitrifying bacteria, but not other major soil microorganisms , 2009 .

[44]  B. Lugtenberg,et al.  Plant-growth-promoting rhizobacteria. , 2009, Annual review of microbiology.

[45]  F. Hartl,et al.  Converging concepts of protein folding in vitro and in vivo , 2009, Nature Structural &Molecular Biology.

[46]  G. Béna,et al.  Mesorhizobium metallidurans sp. nov., a metal-resistant symbiont of Anthyllis vulneraria growing on metallicolous soil in Languedoc, France. , 2009, International journal of systematic and evolutionary microbiology.

[47]  N. Weyens,et al.  Phytoremediation: plant-endophyte partnerships take the challenge. , 2009, Current opinion in biotechnology.

[48]  M. S. Khan,et al.  Toxicity Assessment of Herbicides Quizalafop-p-Ethyl and Clodinafop Towards Rhizobium Pea Symbiosis , 2009, Bulletin of environmental contamination and toxicology.

[49]  Kirsten M. Müller,et al.  1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Genes in Rhizobia from Southern Saskatchewan , 2009, Microbial Ecology.

[50]  A. Pühler,et al.  The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH , 2009, BMC Microbiology.

[51]  S. Maskey,et al.  The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems , 2009, Symbiosis.

[52]  J. K. Bisht,et al.  Coinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.) , 2009 .

[53]  S. Lee,et al.  Microbial small heat shock proteins and their use in biotechnology. , 2008, Biotechnology advances.

[54]  M. Megias,et al.  Effect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress , 2008 .

[55]  C. Chanway,et al.  Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici , 2008 .

[56]  Shu-Jun Tian,et al.  Phosphate-Solubilizing and -Mineralizing Abilities of Bacteria Isolated from Soils 1 1 Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education of the P.R. China. , 2008 .

[57]  G. Archana,et al.  Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. , 2008, Bioresource technology.

[58]  A. Zitoun,et al.  Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea–rhizobia associations , 2008 .

[59]  Miguel Lara,et al.  Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. , 2008, Molecular plant-microbe interactions : MPMI.

[60]  M. Yamashita,et al.  Promotion of metal accumulation in nodule of Astragalus sinicus by the expression of the iron-regulated transporter gene in Mesorhizobium huakuii subsp. rengei B3. , 2008, Journal of bioscience and bioengineering.

[61]  J. Vanderleyden,et al.  Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba , 2008, Plant and Soil.

[62]  S. Camerini,et al.  Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development , 2008, Archives of Microbiology.

[63]  Iqbal Ahmad,et al.  Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. , 2008, Microbiological research.

[64]  F. Şahin,et al.  Influence of Nitrogen Fixing and Phosphorus Solubilizing Bacteria on the Nodulation, Plant Growth, and Yield of Chickpea , 2007 .

[65]  Almas Zaidi,et al.  Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. , 2007, Chemosphere.

[66]  S. Reichman The potential use of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites , 2007 .

[67]  M. S. Khan,et al.  Co-inoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea , 2007 .

[68]  Md. Saghir Khan,et al.  Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil , 2007, Biotechnology Letters.

[69]  Jos Vanderleyden,et al.  Indole-3-acetic acid in microbial and microorganism-plant signaling. , 2007, FEMS microbiology reviews.

[70]  J. Michiels,et al.  Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition , 2007, European Journal of Plant Pathology.

[71]  Roberto Pinton,et al.  The rhizosphere : biochemistry and organic substances at the soil-plant interface , 2007 .

[72]  M. S. Khan,et al.  Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea , 2007 .

[73]  D. Grasso,et al.  Rhizobium tropici response to acidity involves activation of glutathione synthesis. , 2007, Microbiology.

[74]  Manoj Kumar,et al.  Crop improvement and root rot suppression by seed bacterization in chickpea , 2007 .

[75]  R. Dubey,et al.  Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris) , 2007 .

[76]  F. Cassan,et al.  Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications , 2007, Applied Microbiology and Biotechnology.

[77]  N. Tejera,et al.  Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions , 2006 .

[78]  P. Singleton,et al.  The alternative sigma factor RpoH2 is required for salt tolerance in Sinorhizobium sp. strain BL3. , 2006, Research in microbiology.

[79]  S. Pereira,et al.  Heavy metal toxicity in Rhizobium leguminosarum biovar viciae isolated from soils subjected to different sources of heavy-metal contamination: Effects on protein expression , 2006 .

[80]  G. Alloing,et al.  Proline Betaine Uptake in Sinorhizobium meliloti: Characterization of Prb, an Opp-Like ABC Transporter Regulated by both Proline Betaine and Salinity Stress , 2006, Journal of bacteriology.

[81]  A. Willems The taxonomy of rhizobia: an overview , 2006, Plant and Soil.

[82]  S. Pereira,et al.  Screening Possible Mechanisms Mediating Cadmium Resistance in Rhizobium leguminosarum bv. viciae Isolated from Contaminated Portuguese Soils , 2006, Microbial Ecology.

[83]  K. Sahrawat,et al.  Scope and Strategies for Regulation of Nitrification in Agricultural Systems—Challenges and Opportunities , 2006 .

[84]  I. Oresnik,et al.  Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. , 2006, Microbiology.

[85]  S. Oliveira,et al.  Effect of Heat and pH Stress in the Growth of Chickpea Mesorhizobia , 2006, Current Microbiology.

[86]  Vinod Kumar,et al.  Rhizobium-Mediated Induction of Phenolics and Plant Growth Promotion in Rice (Oryza sativa L.) , 2006, Current Microbiology.

[87]  M. Arshad,et al.  Effect of plant growth promoting rhizobacteria containing ACC‐deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.) , 2006, Letters in applied microbiology.

[88]  S. B. Rao,et al.  Isolation and Identification of Natural Endophytic Rhizobia from Rice (Oryza sativa L.) Through rDNA PCR-RFLP and Sequence Analysis , 2006, Current Microbiology.

[89]  M. Madhaiyan,et al.  Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense , 2006, Planta.

[90]  R. Rivas,et al.  The coexistence of symbiosis and pathogenicity-determining genes in Rhizobium rhizogenes strains enables them to induce nodules and tumors or hairy roots in plants. , 2005, Molecular plant-microbe interactions : MPMI.

[91]  R. Vashishat,et al.  High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus). , 2005, Microbiological research.

[92]  Bernard R. Glick,et al.  A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils , 2005 .

[93]  R. López,et al.  Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcóllar pyrite mine , 2005 .

[94]  Susana Rodríguez-Echeverría,et al.  Potential use of Iberian shrubby legumes and rhizobia inoculation in revegetation projects under acidic soil conditions , 2005 .

[95]  Donald L. Smith,et al.  Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes , 2005 .

[96]  R. Mhamdi,et al.  Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris , 2005 .

[97]  K. K. Pal,et al.  Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. , 2004, Microbiological research.

[98]  A. Hall Breeding for adaptation to drought and heat in cowpea , 2004 .

[99]  Alexandre Boscari,et al.  Functional Expression of Sinorhizobium meliloti BetS, a High-Affinity Betaine Transporter, in Bradyrhizobium japonicum USDA110 , 2004, Applied and Environmental Microbiology.

[100]  Trevor C. Charles,et al.  Expression of an Exogenous 1-Aminocyclopropane-1-Carboxylate Deaminase Gene in Sinorhizobium meliloti Increases Its Ability To Nodulate Alfalfa , 2004, Applied and Environmental Microbiology.

[101]  Wei Wei,et al.  Salt-tolerance genes involved in cation efflux and osmoregulation of Sinorhizobium fredii RT19 detected by isolation and characterization of Tn5 mutants. , 2004, FEMS microbiology letters.

[102]  M. Jebara,et al.  Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. , 2004, Plant physiology and biochemistry : PPB.

[103]  X. Li,et al.  Isolation of salt‐sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance , 2004, Letters in applied microbiology.

[104]  L. Gianfreda,et al.  Potential of extra cellular enzymes in remediation of polluted soils: a review , 2004 .

[105]  B. Glick,et al.  Applications of free living plant growth-promoting rhizobacteria , 2004, Antonie van Leeuwenhoek.

[106]  K. Kapoor,et al.  Effectivity of host-Rhizobium leguminosarum symbiosis in soils receiving sewage water containing heavy metals. , 2004, Microbiological research.

[107]  S. Tabata,et al.  Expression Islands Clustered on the Symbiosis Island of the Mesorhizobium loti Genome , 2004, Journal of bacteriology.

[108]  R. Erickson,et al.  Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae , 2004 .

[109]  K. Minamisawa,et al.  Bradyrhizobium elkanii rtxC Gene Is Required for Expression of Symbiotic Phenotypes in the Final Step of Rhizobitoxine Biosynthesis , 2004, Applied and Environmental Microbiology.

[110]  G. Walker,et al.  Glucose 6-phosphate dehydrogenase is required for sucrose and trehalose to be efficient osmoprotectants in Sinorhizobium meliloti. , 2003, FEMS microbiology letters.

[111]  S. Gal,et al.  Isolation and Characterization of Salt Tolerance Rhizobia from Acacia Root Nodules , 2003 .

[112]  P. Pandey,et al.  Rhizobia as a biological control agent against soil borne plant pathogenic fungi. , 2003, Indian journal of experimental biology.

[113]  J. Streeter Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation , 2003, Journal of applied microbiology.

[114]  P. Rogers,et al.  Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli , 2003, Biotechnology Letters.

[115]  Bernard R. Glick,et al.  Rhizobium leguminosarum Biovar viciae 1-Aminocyclopropane-1-Carboxylate Deaminase Promotes Nodulation of Pea Plants , 2003, Applied and Environmental Microbiology.

[116]  J. Vessey Plant growth promoting rhizobacteria as biofertilizers , 2003, Plant and Soil.

[117]  S. Shaukat,et al.  The influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrophomina phaseolina by fluorescent pseudomonads in tomato , 2003, Letters in applied microbiology.

[118]  J. Lloret,et al.  Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere , 2003, Plant and Soil.

[119]  E. Watkin,et al.  Physiological responses to acid stress of an acid-soil tolerant and an acid-soil sensitive strain of Rhizobium leguminosarum biovar trifolii , 2003 .

[120]  Sofie Dobbelaere,et al.  Plant Growth-Promoting Effects of Diazotrophs in the Rhizosphere , 2003 .

[121]  M. Takagi,et al.  Enhanced Accumulation of Cd2+ by a Mesorhizobium sp. Transformed with a Gene from Arabidopsis thaliana Coding for Phytochelatin Synthase , 2003, Applied and Environmental Microbiology.

[122]  M. Hayashi,et al.  A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. , 2002, Journal of biotechnology.

[123]  R. Yaklich,et al.  Characterization of ndvD, the third gene involved in the synthesis of cyclic beta-(1 --> 3),(1 --> 6)-D-glucans in Bradyrhizobium japonicum. , 2002, Canadian journal of microbiology.

[124]  Stefan Norra,et al.  17th World congress of soil science , 2002 .

[125]  G. Singh,et al.  In vitro studies on the effects of herbicides on the growth of rhizobia , 2002, Letters in applied microbiology.

[126]  S. Peng,et al.  Influence of Rhizobial Inoculation on Photosynthesis and Grain Yield of Rice , 2002 .

[127]  N. Peters,et al.  Redundancy in Periplasmic Binding Protein-Dependent Transport Systems for Trehalose, Sucrose, and Maltose in Sinorhizobium meliloti , 2002, Journal of bacteriology.

[128]  R. Webby,et al.  Comparative Sequence Analysis of the Symbiosis Island of Mesorhizobium loti Strain R7A , 2002, Journal of bacteriology.

[129]  Alexandre Boscari,et al.  BetS Is a Major Glycine Betaine/Proline Betaine Transporter Required for Early Osmotic Adjustment in Sinorhizobium meliloti , 2002, Journal of bacteriology.

[130]  J. Strap,et al.  Novel Plant-Microbe Rhizosphere Interaction Involving Streptomyces lydicus WYEC108 and the Pea Plant (Pisum sativum) , 2002, Applied and Environmental Microbiology.

[131]  J. Beynon,et al.  Rhizobium leguminosarum bv. viciae populations in soils with increasing heavy metal contamination: abundance, plasmid profiles, diversity and metal tolerance , 2002 .

[132]  J. Olivares,et al.  Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. , 2002, Molecular plant-microbe interactions : MPMI.

[133]  B. Clothier,et al.  Cadmium adsorption by rhizobacteria: implications for New Zealand pastureland , 2001 .

[134]  J. L. W. Rademaker,et al.  The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots , 2001 .

[135]  Z. Siddiqui,et al.  Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. , 2001, Bioresource technology.

[136]  İ. Özkoç,et al.  In Vitro Inhibition of the Mycelial Growth of Some Root Rot Fungi by Rhizobium leguminosarum Biovar phaseoli Isolates , 2001 .

[137]  Y Liu,et al.  Adsorption of heavy metals by EPS of activated sludge. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[138]  M. Santamaría,et al.  Effects of salinity on protein and lipopolysaccharide pattern in a salt‐tolerant strain of Mesorhizobium ciceri , 2001, Journal of applied microbiology.

[139]  I. Sutherland Exopolysaccharides in biofilms, flocs and related structures. , 2001, Water science and technology : a journal of the International Association on Water Pollution Research.

[140]  R. Mhamdi,et al.  Genetic diversity of Sinorhizobium populations recovered from different medicago varieties cultivated in Tunisian soils. , 2001, Canadian journal of microbiology.

[141]  P. Rogers,et al.  Metal binding capabilities of Rhizobium etli and its extracellular polymeric substances , 2000, Biotechnology Letters.

[142]  R. Schulin,et al.  Siderophores, NTA, and Citrate: Potential Soil Amendments to Enhance Heavy Metal Mobility in Phytoremediation , 2000 .

[143]  J. Ladha,et al.  Rhizobia inoculation improves nutrient uptake and growth of lowland rice. , 2000 .

[144]  R. Sikora,et al.  Lipopolysaccharides of Rhizobium etliStrain G12 Act in Potato Roots as an Inducing Agent of Systemic Resistance to Infection by the Cyst Nematode Globodera pallida , 2000, Applied and Environmental Microbiology.

[145]  C. Cobbett Phytochelatins and their roles in heavy metal detoxification. , 2000, Plant physiology.

[146]  S. McGrath,et al.  A study of the impacts of Zn and Cu on two rhizobial species in soils of a long-term field experiment , 2000, Plant and Soil.

[147]  P. Gresshoff,et al.  Inoculation and nitrate alter phytohormone levels in soybean roots: differences between a supernodulating mutant and the wild type , 2000, Planta.

[148]  C. Nautiyal,et al.  Effects of Salt and pH Stress on Temperature-Tolerant Rhizobium sp. NBRI330 Nodulating Prosopis juliflora , 2000, Current Microbiology.

[149]  H. Zahran Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate , 1999, Microbiology and Molecular Biology Reviews.

[150]  M. Münchbach,et al.  Multiple Small Heat Shock Proteins in Rhizobia , 1999, Journal of bacteriology.

[151]  S. Akao,et al.  The use of GUS-reporter gene to study the effect of Azospirillum-Rhizobium coinoculation on nodulation of white clover , 1998, Biology and Fertility of Soils.

[152]  R. Mhamdi,et al.  Nodulation and growth of common bean under NaCl-stress , 1998 .

[153]  J. S. Duhan,et al.  Siderophore production in relation to N2 fixation and iron uptake in pigeon pea-Rhizobium symbiosis , 1998, Folia Microbiologica.

[154]  A. Saxena,et al.  Effect of plant growth promoting rhizobacteria on competitive ability of introduced Bradyrhizobium sp. (Vigna) for nodulation , 1998 .

[155]  J. M. Rubio,et al.  Exopolysaccharide II Production Is Regulated by Salt in the Halotolerant Strain Rhizobium melilotiEFB1 , 1998, Applied and Environmental Microbiology.

[156]  J. McGrath,et al.  Biodegradation of Phosphonomycin by Rhizobium huakuii PMY1 , 1998, Applied and Environmental Microbiology.

[157]  E. Watkin,et al.  Calcium and acid stress interact to affect the growth of Rhizobium leguminosarum bv. trifolii , 1997 .

[158]  S. Smith Rhizobium in soils contaminated with copper and zinc following the long-term application of sewage sludge and other organic wastes , 1997 .

[159]  H. G. Diem,et al.  Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium , 1997 .

[160]  L. S. Forsberg,et al.  Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp , 1997, Journal of bacteriology.

[161]  S. McGrath,et al.  Effectiveness and genetic diversity of Rhizobium leguminosarum bv. trifolii isolates in Portuguese soils polluted by industrial effluents , 1997 .

[162]  A. Richardson,et al.  Soil isolates of Pseudomonas spp. that utilize inositol phosphates. , 1997, Canadian journal of microbiology.

[163]  A. Downie Fixing a symbiotic circle , 1997, Nature.

[164]  K. Killham,et al.  Development of an acute and chronic ecotoxicity assay using lux‐marked Rhizobium leguminosarum biovar trifolii , 1997, Letters in applied microbiology.

[165]  H. Ohtake,et al.  Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation , 1996 .

[166]  J. González-López,et al.  Studies on the effects of the herbicide simazine on microflora of four agricultural soils , 1996 .

[167]  H. Antoun,et al.  Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar. phaseoli , 1996, Plant and Soil.

[168]  S. Khanna,et al.  Modulation of protein profiles in Rhizobium sp. under salt stress , 1996 .

[169]  S. Jarvis Future trends in nitrogen research , 1996, Plant and Soil.

[170]  M. Hynes,et al.  Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. , 1996, Canadian journal of microbiology.

[171]  B R Glick,et al.  Bacterial biosynthesis of indole-3-acetic acid. , 1996, Canadian journal of microbiology.

[172]  R. Tate Phytohormones in Soils: Microbial Production and Function. , 1996 .

[173]  J. Lloret,et al.  Ionic Stress and Osmotic Pressure Induce Different Alterations in the Lipopolysaccharide of a Rhizobium meliloti Strain , 1995, Applied and environmental microbiology.

[174]  R. Mehra,et al.  Glutathione-mediated transfer of Cu(I) into phytochelatins. , 1995, The Biochemical journal.

[175]  Bernard R. Glick,et al.  The enhancement of plant growth by free-living bacteria , 1995 .

[176]  M. H. Abd‐Alla Use of organic phosphorus byRhizobium leguminosarum biovarviceae phosphatases , 1994, Biology and Fertility of Soils.

[177]  R. Serraj,et al.  Salt stress induces a decrease in the oxygen uptake of soybean nodules and in their permeability to oxygen diffusion. , 1994 .

[178]  M. Sadowsky,et al.  Tellurium and Selenium Resistance in Rhizobia and Its Potential Use for Direct Isolation of Rhizobium meliloti from Soil , 1994, Applied and environmental microbiology.

[179]  J. Michiels,et al.  Effects of Temperature Stress on Bean-Nodulating Rhizobium Strains , 1994, Applied and environmental microbiology.

[180]  M. H. Abd‐Alla Solubilization of rock phosphates byRhizobium andBradyrhizobium , 1994, Folia Microbiologica.

[181]  S. Danso,et al.  Persistence and recovery of introduced Rhizobium ten years after inoculation on Leucaena leucocephala grown on an Alfisol in southwestern Nigeria , 1994, Plant and Soil.

[182]  M. Madkour,et al.  Osmoregulation in Rhizobium meliloti: Mechanism and control by other environmental signals , 1994 .

[183]  K. Giller,et al.  Heavy metals from past applications of sewage sludge decrease the genetic diversity of rhizobium leguminosarum biovar trifolii populations , 1993 .

[184]  P. K. Chakrabartty,et al.  Solubilization of inorganic phosphate byRhizobium , 1993, Folia Microbiologica.

[185]  A. Ghaffar,et al.  Use of Rhizobia in the Control of Root Rot Diseases of Sunflower, Okra, Soybean and Mungbean , 1993 .

[186]  M. Hungria,et al.  Effects of high temperature on nodulation and nitrogen fixation by Phaseolus vulgaris L. , 1993, Plant and Soil.

[187]  D. Binkley,et al.  A new method for estimating gross phosphorus mineralization and immobilization rates in soils , 1992, Plant and Soil.

[188]  P. Graham Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions , 1992 .

[189]  J. Ladha,et al.  Biological nitrogen fixation for sustainable agriculture: A perspective , 1992, Plant and Soil.

[190]  M. Peoples,et al.  Biological nitrogen fixation: Investments, expectations and actual contributions to agriculture , 1992, Plant and Soil.

[191]  J. Leigh,et al.  Induction of the second exopolysaccharide (EPSb) in Rhizobium meliloti SU47 by low phosphate concentrations , 1991, Journal of bacteriology.

[192]  W. Frankenberger,et al.  Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the vegetative growth of Zea mays , 1991, Plant and Soil.

[193]  N. Orange,et al.  Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacterium Pseudomonas fluorescens , 1991, Journal of bacteriology.

[194]  W. Frankenberger,et al.  Influence of adenine, isopentyl alcohol and Azotobacter chroococcum on the growth of Raphanus sativus , 1990, Plant and Soil.

[195]  C. Johansen,et al.  Effects of the sodium/calcium ratio in modifying salinity response of pigeonpea (Cajanus cajan) , 1990 .

[196]  S. Kaijalainen,et al.  Stability of Markers Used for Identification of Two Rhizobium galegae Inoculant Strains after Five Years in the Field , 1990, Applied and environmental microbiology.

[197]  M. Wood,et al.  SelectingRhizobium phaseoli strains for use with beans (Phaseolus vulgaris L.) in Kenya: Tolerance of high temperature and antibiotic resistance , 1988, Plant and Soil.

[198]  P. J. Davies The Plant Hormones: Their Nature, Occurrence, and Functions , 1987 .

[199]  P. Hartel,et al.  Temperature and desiccation tolerance of cowpea rhizobia , 1984 .

[200]  M. Yelton,et al.  Characterization of an Effective Salt-tolerant, Fast-growing Strain of Rhizobium japonicum , 1983 .

[201]  T. Righetti,et al.  Tolerance of Soil Acidity in Symbioses of Mung Bean with Rhizobia1 , 1979 .

[202]  T. Sinclair,et al.  Photosynthate and Nitrogen Requirements for Seed Production by Various Crops , 1975, Science.

[203]  P. W. Wilson,et al.  THE MECHANISM OF BIOLOGICAL NITROGEN FIXATION , 1947, Bacteriological reviews.

[204]  Barbara Pfeffer,et al.  Environmental Inorganic Chemistry Properties Processes And Estimation Methods , 2016 .

[205]  M. Sattar,et al.  Evaluating some salinity tolerant rhizobacterial strains to lentil production under salinity stress , 2013 .

[206]  N. Arora Plant Microbe Symbiosis: Fundamentals and Advances , 2013, Springer India.

[207]  Maqshoof Ahmad,et al.  Synergistic effect of rhizobia and plant growth promoting rhizobacteria on the growth and nodulation of lentil seedlings under axenic conditions. , 2013 .

[208]  A. Sessitsch,et al.  Potential of Rhizosphere Bacteria for Improving Rhizobium-Legume Symbiosis , 2013 .

[209]  A. Nagar,et al.  Performance of Bradyrhizobial isolates under drought condition s , 2013 .

[210]  C. Walthall,et al.  Climate Change and Agriculture in the United States: Effects and Adaptation , 2013 .

[211]  W. Batchelor,et al.  Recent Advances in Biofertilizers and Biofungicides (PGPR)for Sustainable Agriculture , 2013 .

[212]  Tracey Ann Cuin,et al.  Plant Salt Tolerance , 2012, Methods in Molecular Biology.

[213]  K. Sahrawat,et al.  Biological Nitrification Inhibition—A Novel Strategy to Regulate Nitrification in Agricultural Systems , 2012 .

[214]  N. Akhtar,et al.  INFLUENCE OF AZOTOBACTER AND IAA ON SYMBIOTIC PERFORMANCE OF RHIZOBIUM AND YIELD PARAMETERS OF LENTIL , 2012 .

[215]  M. S. Khan,et al.  Ecological assessment of biotoxicity of pesticides towards plant growthpromoting activities of pea (Pisum sativum)-specific Rhizobium sp. strainMRP1 - , 2012 .

[216]  M. Ashraf,et al.  Potential of Rhizobia for Sustainable Production of Non-legumes , 2012 .

[217]  M. S. Khan,et al.  Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4 , 2012 .

[218]  P. Reddy,et al.  Plant Growth-Promoting Rhizobacteria (PGPR) , 2012 .

[219]  M. Ozturk,et al.  Crop Production for Agricultural Improvement , 2012, Springer Netherlands.

[220]  Washington Dc,et al.  International Food Policy Research Institute (IFPRI) Development Strategy and Governance 2033 K St NW , 2012 .

[221]  A. Moezzi,et al.  Co-Inoculation of Rhizobium and Azotobacter on Growth Indices of Faba Bean under Water Stress in the Green House Condition , 2011 .

[222]  M. S. Khan,et al.  Productivity of greengram in tebuconazole-stressed soil, by using a tolerant and plant growth-promoting Bradyrhizobium sp. MRM6 strain , 2011, Acta Physiologiae Plantarum.

[223]  A. Alexandre,et al.  Most heat-tolerant rhizobia show high induction of major chaperone genes upon stress. , 2011, FEMS microbiology ecology.

[224]  P. Chen,et al.  Symbiotic effectiveness, competitiveness and salt tolerance of lucerne rhizobia , 2011 .

[225]  Jelena Kne Improvement of common bean growth by co-inoculation with Rhizobium and plant growth-promoting bacteria , 2011 .

[226]  E. Wang,et al.  Characterization of a copper-resistant symbiotic bacterium isolated from Medicago lupulina growing in mine tailings. , 2011, Bioresource technology.

[227]  H. Turral,et al.  The state of the world's land and water resources for food and agriculture : managing systems at risk , 2011 .

[228]  S. Udupa,et al.  Variability in natural populations of Sinorhizobium meliloti in Morocco , 2010 .

[229]  A. Bano,et al.  Effect of diazotrophs (Rhizobium and Azatebactor) on growth of maize (Zea mays L.) and accumulation of lead (PB) in different plant parts. , 2010 .

[230]  Qureshi,et al.  Co-inoculation with Mesorhizobium ciceri and Azotobacter chroococcum for improving growth, nodulation and yield of chickpea (Cicer arietinum L.) , 2009 .

[231]  M. Madhaiyan,et al.  Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). , 2009, Microbiological research.

[232]  C. Ryu,et al.  Rhizosphere bacteria help plants tolerate abiotic stress. , 2009, Trends in plant science.

[233]  F. Cassan,et al.  Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.) , 2009 .

[234]  Almas Zaidi,et al.  Effect of Metal-Tolerant Plant Growth-Promoting Rhizobium on the Performance of Pea Grown in Metal-Amended Soil , 2008, Archives of environmental contamination and toxicology.

[235]  A. Bano,et al.  Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). , 2008 .

[236]  F. Hafeez,et al.  Rhizobium leguminosarum bv viciae Strain LC-31: Analysis of Novel Bacteriocin and ACC Deaminase Gene(s) , 2008 .

[237]  G. O’Hara,et al.  Biological Nitrogen Fixation: Towards Poverty Alleviation through Sustainable Agriculture , 2008 .

[238]  N. Uren,et al.  Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants , 2007 .

[239]  I. Ndoye,et al.  Water-condition effects on rhizobia competition for cowpea nodule occupancy , 2006 .

[240]  P. Singleton,et al.  Identification of two clusters of genes involved in salt tolerance in Sinorhizobium sp. strain BL3 , 2006 .

[241]  A. Squartini,et al.  Recent Studies on the Rhizobium-Cereal Association , 2005 .

[242]  C. Elmerich,et al.  Biological Nitrogen Fixation, Sustainable Agriculture and the Environment , 2005 .

[243]  S. Pereira,et al.  Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: glutathione as a detoxifying agent. , 2005, Canadian journal of microbiology.

[244]  Y. Bashan,et al.  BACTERIA | Plant Growth-Promoting , 2005 .

[245]  J. Hatfield,et al.  Encyclopedia of Soils in The Environment , 2004 .

[246]  D. Juraeva,et al.  Improvement of wheat and cotton growth and nutrient uptake by phosphate solubilizing bacteria. , 2004 .

[247]  R. Lalande,et al.  Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.) , 2004, Plant and Soil.

[248]  M. Udvardi,et al.  Siderophore-bound iron in the peribacteriod space of soybean root nodules , 2004, Plant and Soil.

[249]  B. Glick,et al.  Prevalence of 1-aminocyclopropane-1-carboxylate deaminase in Rhizobium spp. , 2004, Antonie van Leeuwenhoek.

[250]  J. S. Virdi,et al.  Rhizobacterial diversity in India and its influence on soil and plant health. , 2003, Advances in biochemical engineering/biotechnology.

[251]  R. Dubey,et al.  ISOLATION OF PLANT GROWTHPROMOTING STRAINS OF BRADYRHIZOBIUM (ARACHIS) SP. WITH BIOCONTROL POTENTIAL AGAINST MACROPHOMINA PHASEOLINA CAUSING CHARCOAL ROT OF PEANUT , 2003 .

[252]  N. Arora,et al.  Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut , 2001 .

[253]  N. Sardesai,et al.  Cold stress induced high molecular weight membrane polypeptides are responsible for cold tolerance in Rhizobium DDSS69. , 2001, Microbiological research.

[254]  D. Purchase,et al.  Survival and Nodulating Ability of Indigenous and Inoculated Rhizobium leguminosarum biovar trifolii in Sterilized and Unsterilized Soil Treated with Sewage Sludge , 2001, Current Microbiology.

[255]  S. Sindhu,et al.  Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by Mesorhizobium sp. Cicer in chickpea. , 2001, Microbiological research.

[256]  G. Wright,et al.  Adaptation of grain legumes (pulses) to water-limited environments , 2001 .

[257]  P. Mateos,et al.  Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions , 2001 .

[258]  A. Ghaffar,et al.  Effect of urea on the efficacy of Bradyrhizobium Sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. , 2000 .

[259]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[260]  M. Dilworth,et al.  Hydroxamate siderophores of root nodule bacteria , 2000 .

[261]  D. C. Cameron,et al.  Purification and Characterization of aBacillus licheniformisPhosphatase Specific ford-α-Glycerophosphate☆ , 1998 .

[262]  A. G. Wollum,et al.  Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils , 1997 .

[263]  D. Purchase,et al.  Cadmium uptake and nitrogen fixing ability in heavy-metal-resistant laboratory and field strains of Rhizobium leguminosarum biovar trifolii , 1997 .

[264]  R. Lal,et al.  Molecular aspects of pesticide degradation by microorganisms. , 1996, Critical reviews in microbiology.

[265]  P. J. Davies Plant hormones : physiology, biochemistry and molecular biology , 1995 .

[266]  P. Davis,et al.  The plant hormones : Their nature, occurrence, and functions , 1995 .

[267]  B. Hammer,et al.  Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899 , 1994 .

[268]  K. Lindström,et al.  Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress , 1994, World journal of microbiology & biotechnology.

[269]  L. Dandurand,et al.  Characterization of salt-tolerant and salt-sensitive mutants of Rhizobium leguminosarum biovar viciae strain C1204b. , 1992, FEMS microbiology letters.

[270]  K. Lindström,et al.  Diversity of Rhizobium Bacteria Isolated from the Root Nodules of Leguminous Trees , 1991 .

[271]  J. Kägi Overview of metallothionein. , 1991, Methods in enzymology.

[272]  J. Mauseth Botany : An Introduction to Plant Biology , 1991 .

[273]  P. K. Chakrabartty,et al.  SOLUBILIZATION OF ROCK PHOSPHATE BY RHIZOBIUM AND BRADYRHIZOBIUM , 1990 .

[274]  M. Wood,et al.  Salt effects on survival and multiplication of chickpea and soybean rhizobia , 1990 .

[275]  T. Ezaki,et al.  Biochemical characterization of Lactococcus lactis IO-1 whose optimal temperature is as high as 37°C , 1990 .

[276]  T. Moorman A review of pesticide effects on microorganisms and microbial processes related to soil fertility , 1989 .

[277]  J. Sánchez-Serrano,et al.  Mutants of Rhizobium phaseoli HM Mel− obtained by means of elevated temperatures , 1988 .

[278]  R. Simpson,et al.  Consequences of soil acidity and the effect of lime on the nodulation of Trifolium subterraneum L. Growing in an acid soil , 1988 .

[279]  D. Walton Abscisic Acid Biosynthesis and Metabolism , 1987 .

[280]  M. El-Abyad,et al.  Effects of the herbicides simazine and bromophenoxim on the microflora of two soil types in Egypt. , 1985, Zentralblatt fur Mikrobiologie.

[281]  Subba M. Rao Current developments in biological nitrogen fixation , 1984 .

[282]  F.W.T. Penning de Vries,et al.  Bioenergetics of growth of seeds, fruits and storage organs , 1983 .

[283]  A. Peixa,et al.  Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions , 2022 .