Alkali-activated materials

Abstract This paper, which forms part of the UNEP White Papers series on Eco-Efficient Cements, provides a brief discussion of the class of cementing materials known as ‘alkali-activated binders’, which are identified to have potential for utilization as a key component of a sustainable future global construction materials industry. These cements are not expected to offer a like-for-like replacement of Portland cement across its full range of applications, for reasons related to supply chain limitations, practical challenges in some modes of application, and the need for careful control of formulation and curing. However, when produced using locally-available raw materials, with well-formulated mix designs (including in particular consideration of the environmental footprint of the alkaline activator) and production under adequate levels of quality control, alkali-activated binders are potentially an important and cost-effective component of the future toolkit of sustainable construction materials.

[1]  Deepak Ravikumar,et al.  Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure , 2013 .

[2]  Fernando Pacheco-Torgal,et al.  Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? , 2012 .

[3]  Andrew C. Heath,et al.  Minimising the global warming potential of clay based geopolymers , 2014 .

[4]  P. Balaguru,et al.  FIRE RESISTANT ALUMINOSILICATE COMPOSITES , 1997 .

[5]  Detlef Heinz,et al.  Life Cycle Assessment of Geopolymer Concrete – What is the Environmental Benefit , 2009 .

[6]  Hao Wang,et al.  Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete , 2015 .

[7]  John L. Provis,et al.  Alkali activated materials : state-of-the-art report, RILEM TC 224-AAM , 2014 .

[8]  J. E. Gillott,et al.  Alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR) in activated blast furnace slag cement (ABFSC) concrete , 1996 .

[9]  Matthias Fawer,et al.  Life cycle inventories for the production of sodium silicates , 1999 .

[10]  John L. Provis,et al.  One‐Part Geopolymers Based on Thermally Treated Red Mud/NaOH Blends , 2015 .

[11]  J. Brus,et al.  Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers , 2007 .

[12]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[13]  I. Giannopoulou,et al.  UTILIZATION OF ALUMINA RED MUD FOR SYNTHESIS OF INORGANIC POLYMERIC MATERIALS , 2009 .

[14]  Dimitrios Panias,et al.  Thermal insulating foamy geopolymers from perlite , 2010 .

[15]  Anja Buchwald,et al.  Demonstration Projects and Applications in Building and Civil Infrastructure , 2014 .

[16]  Ángel Palomo,et al.  Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development – Part II , 2007 .

[17]  Francisca Puertas,et al.  The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate , 2002 .

[18]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[19]  John L. Provis,et al.  Technical and commercial progress in the adoption of geopolymer cement , 2012 .

[20]  Sanjay Kumar,et al.  Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization , 2013 .

[21]  Larry A. Bellamy,et al.  Thermal performance of variable density wall panels made using Portland cement or inorganic polymer concrete , 2015 .

[22]  Petr Hlaváček,et al.  Inorganic foams made from alkali-activated fly ash: Mechanical, chemical and physical properties , 2015 .

[23]  J. Davidovits Geopolymer chemistry and applications , 2008 .

[24]  Hua Xu,et al.  Characterization of Aged Slag Concretes , 2008 .

[25]  G. Kovalchuk,et al.  Producing fire- and heat-resistant geopolymers , 2009 .

[26]  John Day,et al.  EFC geopolymer concrete aircraft pavements at Brisbane West Wellcamp Airport , 2015 .

[27]  P. Van den Heede,et al.  Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations , 2012 .

[28]  F. Collins,et al.  Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete , 2013 .

[29]  M. Sisol,et al.  THE POTENTIAL USE OF FLY ASH WITH A HIGH CONTENT OF UNBURNED CARBON IN GEOPOLYMERS , 2011 .

[30]  Martin Cyr,et al.  Alkali–silica reaction in metakaolin-based geopolymer mortar , 2015 .

[31]  John L. Provis,et al.  The interrelationship between surface chemistry and rheology in alkali activated slag paste , 2014 .

[32]  Yiannis Pontikes,et al.  Slags with a high Al and Fe content as precursors for inorganic polymers , 2013 .

[33]  Guillaume Habert,et al.  A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry , 2012, The International Journal of Life Cycle Assessment.

[34]  John L. Provis,et al.  Management and valorisation of wastes through use in producing alkali‐activated cement materials , 2016 .

[35]  Anja Buchwald,et al.  Life-cycle analysis of geopolymers , 2009 .

[36]  J. Provis,et al.  Advances in understanding alkali-activated materials , 2015 .

[37]  Ángel Palomo,et al.  The Early Age Hydration Reactions of a Hybrid Cement Containing a Very High Content of Coal Bottom Ash , 2014 .

[38]  John L. Provis,et al.  Activating solution chemistry for geopolymers , 2009 .

[39]  Nele De Belie,et al.  Purdocement: application of alkali-activated slag cement in Belgium in the 1950s , 2015 .

[40]  John L. Provis,et al.  Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes , 2013 .

[41]  Anton K. Schindler,et al.  Properties of Self-Consolidating Concrete for Prestressed Members , 2007 .

[42]  Guillaume Habert,et al.  Recent update on the environmental impact of geopolymers , 2016 .

[43]  Alexander J. Moseson,et al.  High volume limestone alkali-activated cement developed by design of experiment , 2012 .

[44]  Fred Andrews-Phaedonos Specification and use of geopolymer concrete , 2014 .

[45]  Chunming Gong,et al.  Effect of phosphate on the hydration of alkali-activated red mud–slag cementitious material , 2000 .

[46]  Grant C. Lukey,et al.  Thermal Conductivity of Metakaolin Geopolymers Used as a First Approximation for Determining Gel Interconnectivity , 2006 .

[47]  P. Michaud,et al.  Silica fume as porogent agent in geo-materials at low temperature , 2010 .

[48]  Kostas Komnitsas,et al.  Geopolymerisation of low calcium ferronickel slags , 2007 .

[49]  N. Roussel,et al.  An environmental evaluation of geopolymer based concrete production: reviewing current research trends , 2011 .

[50]  Keun-Hyeok Yang,et al.  Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide , 2009 .

[51]  Hao Wang,et al.  Geopolymer foam concrete: An emerging material for sustainable construction , 2014 .

[52]  Martin Liska,et al.  Cemfree - The development of non-Portland cement based concretes , 2015 .

[53]  S. Bernal,et al.  Geopolymers and Related Alkali-Activated Materials , 2014 .

[54]  John L. Provis,et al.  Durability of Alkali‐Activated Materials: Progress and Perspectives , 2014 .

[55]  Jerry Stephens,et al.  Structural Applications Of 100 Percent Fly Ash Concrete Structural Applications Of . 100 Percent Fly Ash Concrete , 2005 .

[56]  John L. Provis,et al.  Natural carbonation of aged alkali-activated slag concretes , 2014 .

[57]  Hao Wang,et al.  Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence , 2014 .

[58]  Maria Chiara Bignozzi,et al.  A comparison between different foaming methods for the synthesis of light weight geopolymers , 2014 .

[59]  John L. Provis,et al.  Valorisation of a kaolin mining waste for the production of geopolymers , 2016 .

[60]  G. Corder,et al.  Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement , 2011 .

[61]  John L. Provis,et al.  Effect of molecular architecture of polycarboxylate ethers on plasticizing performance in alkali-activated slag paste , 2014, Journal of Materials Science.

[63]  Paolo Colombo,et al.  Geopolymer foams by gelcasting , 2014 .

[64]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[65]  Cyril J. Lynsdale,et al.  Oxygen and Chloride Permeability of Alkali-Activated Natural Pozzolan Concrete , 2012 .

[66]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[67]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[68]  Ke Chen,et al.  Research on Set Retarder of High and Super High Strength Alkali -Activated Slag Cement and Concrete , 2011 .

[69]  John L. Provis,et al.  Development, Standardization, and Applications of Alkali-activated Concretes , 2013 .

[70]  J. E. Gillott,et al.  Freeze-Thaw Durability of ActivatedBlast Furnace Slag Cement Concrete , 1996 .

[71]  L C Muszynski,et al.  CORROSION PROTECTION OF REINFORCING STEEL USING PYRAMENT BLENDED CEMENT CONCRETE , 1991 .

[72]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[73]  Susan A. Bernal,et al.  Advances in near-neutral salts activation of blast furnace slags , 2016 .

[74]  Xiaolu Guo,et al.  Use of Heat‐Treated Water Treatment Residuals in Fly Ash‐Based Geopolymers , 2010 .

[75]  Zhenguo Shi,et al.  A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates , 2015 .

[76]  John L. Provis,et al.  Thermal Activation of Albite for the Synthesis of One‐Part Mix Geopolymers , 2012 .

[77]  Jueshi Qian,et al.  High performance cementing materials from industrial slags — a review , 2000 .

[78]  Ali Allahverdi,et al.  Efflorescence control in geopolymer binders based on natural pozzolan , 2012 .

[79]  Marios Soutsos,et al.  Selection and characterisation of geological materials for use as geopolymer precursors , 2015 .

[80]  P. L. Pratt,et al.  Alkali-activated slag cement and concrete: a review of properties and problems , 1995 .

[81]  Raj Patel,et al.  Design and Mix Proportioning of Green Concrete Using 100% Fly Ash Based Hydraulic Binder , 2012 .

[82]  K. Rübner,et al.  Geopolymerization of a silica residue from waste treatment of chlorosilane production , 2013 .

[83]  Rostislav Drochytka,et al.  Alkali-aggregate reaction in alkali-activated cement concretes , 2019, IOP Conference Series: Materials Science and Engineering.

[84]  Stephen J. Foster,et al.  Sustainability with Ultra-High Performance and Geopolymer Concrete Construction , 2012 .

[85]  Lubomír Kopecký,et al.  ALUMINOSILICATE POLYMERS - INFLUENCE OF ELEVATED TEMPERATURES, EFFLORESCENCE , 2009 .

[86]  C Ozyildirim A FIELD INVESTIGATION OF CONCRETE PATCHES CONTAINING PYRAMENT BLENDED CEMENT. FINAL REPORT , 1994 .

[87]  Philip G. Malone,et al.  Construction Productivity Advancement Research (CPAR) Program. Performance of Concretes Proportioned with Pyrament Blended Cement , 1994 .

[88]  Robert J. Flatt,et al.  Molecular design of comb-shaped polycarboxylate dispersants for environmentally friendly concrete , 2013 .