Degradation rate quantification of solid oxide fuel cell performance with and without Al2TiO5 addition

[1]  Jong‐Won Lee,et al.  A simplified approach to predict performance degradation of a solid oxide fuel cell anode , 2018, Journal of Power Sources.

[2]  Pravin Kumar,et al.  Electrical conductivity of NiMo–based double perovskites under SOFC anodic conditions , 2018 .

[3]  S. Sofie,et al.  Operando Studies of Redox Resilience in ALT Enhanced NiO-YSZ SOFC Anodes , 2018 .

[4]  Kunho Lee,et al.  Evaluation of metal-supported solid oxide fuel cells (MS-SOFCs) fabricated at low temperature (∼1,000 °C) using wet chemical coating processes and a catalyst wet impregnation method , 2018 .

[5]  D. Osinkin Degradation of Ni-Zr0.9Sc0.1O1.95 anode in H2 + H2O at low temperature: Influence of nickel surface charge , 2018 .

[6]  V. A. Eremin,et al.  Degradation kinetics of LSM–YSZ cathode materials for SOFC , 2018 .

[7]  Nikdalila Radenahmad,et al.  Highly dense and chemically stable proton conducting electrolyte sintered at 1200 °C , 2018 .

[8]  S. Sofie,et al.  Catalyst enhancing aluminum titanate for increasing strength of nickel-zirconia cermets , 2017 .

[9]  Feng Wang,et al.  Quantitative assessment of anode contribution to cell degradation under various polarization conditions using industrial size planar solid oxide fuel cells , 2017 .

[10]  Fellipe Sartori da Silva,et al.  Novel materials for solid oxide fuel cell technologies: A literature review , 2017 .

[11]  E. Siebert,et al.  Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions , 2017 .

[12]  Jun Hee Lee,et al.  Tailoring Ni-based catalyst by alloying with transition metals (M = Ni, Co, Cu, and Fe) for direct hydrocarbon utilization of energy conversion devices. , 2017 .

[13]  S. Sofie,et al.  Enhancement of high temperature metallic catalysts: Aluminum titanate in the nickel-zirconia system , 2016 .

[14]  K. Kim,et al.  Polarization and stability of La2NiO4+δ in comparison with La0.6Sr0.4Co0.2Fe0.8O3−δ as air electrode of solid oxide electrolysis cell , 2016 .

[15]  P. Voorhees,et al.  Observing the microstructural evolution of Ni-Yttria-stabilized zirconia solid oxide fuel cell anodes , 2016 .

[16]  A. Muchtar,et al.  A review on the selection of anode materials for solid-oxide fuel cells , 2015 .

[17]  Zongping Shao,et al.  Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas , 2014 .

[18]  Hiroki Muroyama,et al.  Degradation of nickel–yttria-stabilized zirconia anode in solid oxide fuel cells under changing temperature and humidity conditions , 2014 .

[19]  C. W. Jeong,et al.  Ni–YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode , 2014 .

[20]  S. Senthil Kumar,et al.  Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review , 2014 .

[21]  S. Sofie,et al.  Thermally Stabilized Nickel Electro-Catalyst Introduced by Infiltration for High Temperature Electrochemical Energy Conversion , 2013 .

[22]  S. Sofie,et al.  Electrical conductivity of Sr2−xVMoO6−y (x = 0.0, 0.1, 0.2) double perovskites , 2013 .

[23]  S. Sofie,et al.  Processing and characterization of Sr2−xVMoO6−δ double perovskites , 2013 .

[24]  H. Chandra,et al.  Application of solid oxide fuel cell technology for power generation—A review , 2013 .

[25]  L. A. Chick,et al.  Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation , 2012 .

[26]  L. Mogni,et al.  Thermal stability of Ln2NiO4+δ (Ln: La, Pr, Nd) and their chemical compatibility with YSZ and CGO solid electrolytes , 2011 .

[27]  S. Barnett,et al.  Linking the microstructure, performance and durability of Ni-yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam–scanning electron microscopy imaging , 2011 .

[28]  C. Ding,et al.  Synthesis and evaluation of NiO-Ce0.8SM0.2O1.9 nanocomposite powders for low-temperature solid oxide fuel cells , 2011 .

[29]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[30]  Y. Bo,et al.  Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and its application for anode of SOEC , 2008 .

[31]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[32]  R. Chaim Activation energy and grain growth in nanocrystalline Y-TZP ceramics , 2008 .

[33]  Yves U. Idzerda,et al.  Mechanism for SOFC anode degradation from hydrogen sulfide exposure , 2008 .

[34]  M. Naito,et al.  Performance and stability of SOFC anode fabricated from NiO-YSZ composite particles , 2002 .

[35]  Tomoo Iwata,et al.  Characterization of Ni‐YSZ Anode Degradation for Substrate‐Type Solid Oxide Fuel Cells , 1996 .

[36]  Rak-Hyun Song,et al.  Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review , 2016 .