A review of methods for mapping and prediction of inventory attributes for operational forest management

Forest inventory attributes are an important source of information for a variety of strategic and tactical forest management purposes. However, it is not possible or feasible for field inventories to be conducted contiguously across large areas, especially at a resolution fine enough to be useful for operational management. Therefore, a large number of quantitative modeling and prediction methods have been and are being developed and applied to predict and map forest attributes, with the goal of providing an accurate, spatially continuous, and detailed information base for practitioners of forestry and ecosystem management. This article reviews the most commonly used prediction techniques in the context of a comprehensive modeling framework that includes a discussion of methods, data sources, variable selection, and model validation. The methods discussed include regression, nearest neighbor, artificial neural networks, decision trees, and ensembles such as random forest. No single technique is revealed as universally superior for predicting forest inventory attributes; the ideal approach depends on goals, available training and ancillary data, and the modeler’s interest in tradeoffs between realism and statistical considerations. Useful ancillary data included in the models tend to include climate and topographic variables as well as vegetation indices derived from optical remote sensing systems such as Landsat. However, the use of airborne LiDAR in modeling of forest inventory attributes is increasing rapidly and shows promise for operational forest management applications. Different considerations are encapsulated within a generalized model development framework that provides a structure against which tradeoffs can be evaluated.

[1]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[2]  Andrew P. Robinson,et al.  A validation and evaluation of the Prognosis individual-tree basal area increment model , 2007 .

[3]  Nicholas L. Crookston,et al.  Partitioning error components for accuracy-assessment of near-neighbor methods of imputation , 2007 .

[4]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[5]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .

[6]  O. Hagner,et al.  A method for calibrated maximum likelihood classification of forest types , 2007 .

[7]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[8]  David R. Shonnard,et al.  An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States , 2010 .

[9]  Joanne C. White,et al.  Supporting large-area, sample-based forest inventories with very high spatial resolution satellite imagery , 2009 .

[10]  John J. A. Ingram,et al.  Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks , 2005 .

[11]  Peter T. Wolter,et al.  Improved forest classification in the northern Lake States using multi-temporal Landsat imagery , 1995 .

[12]  Sarah Parks,et al.  An effective assessment protocol for continuous geospatial datasets of forest characteristics using USFS Forest Inventory and Analysis (FIA) data , 2010 .

[13]  E. Næsset,et al.  Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. , 2009 .

[14]  José Antonio Manzanera,et al.  Comparing airborne laser scanning-imagery fusion methods based on geometric accuracy in forested areas , 2011 .

[15]  J. Marshall,et al.  A regression-based equivalence test for model validation: shifting the burden of proof. , 2005, Tree physiology.

[16]  Lorenzo Bruzzone,et al.  An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images , 1996, Pattern Recognit. Lett..

[17]  Sakari Tuominen,et al.  Mapping biomass variables with a multi-source forest inventory technique , 2010 .

[18]  Jussi Peuhkurinen,et al.  Predicting Tree Attributes and Quality Characteristics of Scots Pine Using Airborne Laser Scanning Data , 2009 .

[19]  Joanne C. White,et al.  Identifying leading species using tree crown metrics derived from very high spatial resolution imagery in a boreal forest environment , 2010 .

[20]  Glenn De ' ath,et al.  MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES-ENVIRONMENT RELATIONSHIPS , 2002 .

[21]  Terje Gobakken,et al.  Comparing regression methods in estimation of biophysical properties of forest stands from two different inventories using laser scanner data , 2005 .

[22]  Jennifer L. Dungan,et al.  Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. , 2005 .

[23]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[24]  Robert E. Froese,et al.  Sustainability of the selection system in northern hardwood forests , 2014 .

[25]  Ronald E. McRoberts,et al.  Predicting categorical forest variables using an improved k-Nearest Neighbour estimator and Landsat imagery , 2009 .

[26]  A. Kozak,et al.  Does cross validation provide additional information in the evaluation of regression models , 2003 .

[27]  Janet Franklin,et al.  Mapping land-cover modifications over large areas: A comparison of machine learning algorithms , 2008 .

[28]  D. Leckie Stand delineation and composition estimation using semi-automated individual tree crown analysis , 2003 .

[29]  Kenneth B. Pierce,et al.  Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches , 2010 .

[30]  Johan Holmgren,et al.  Estimation of Tree Lists from Airborne Laser Scanning Using Tree Model Clustering and k-MSN Imputation , 2013, Remote. Sens..

[31]  Jaehoon Jung,et al.  Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm , 2013 .

[32]  J. Hicke,et al.  Estimating aboveground carbon stocks of a forest affected by mountain pine beetle in Idaho using lidar and multispectral imagery , 2012 .

[33]  Terje Gobakken,et al.  Reliability of LiDAR derived predictors of forest inventory attributes: A case study with Norway spruce , 2010 .

[34]  Ronald E. McRoberts,et al.  A two-step nearest neighbors algorithm using satellite imagery for predicting forest structure within species composition classes , 2009 .

[35]  T. Nord-Larsen,et al.  Estimation of forest resources from a country wide laser scanning survey and national forest inventory data , 2012 .

[36]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[37]  M. Vastaranta,et al.  Predicting individual tree attributes from airborne laser point clouds based on the random forests technique , 2011 .

[38]  P. Gessler,et al.  Characterizing forest succession with lidar data: An evaluation for the Inland Northwest, USA , 2009 .

[39]  Denis J. Dean,et al.  Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables , 1999 .

[40]  T. Brandeis,et al.  Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat , 2010 .

[41]  Paul V. Bolstad,et al.  Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products , 1999 .

[42]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[43]  Jörgen Wallerman,et al.  Evaluating sample plot imputation techniques as input in forest management planning , 2007 .

[44]  Giles M. Foody,et al.  Feature Selection for Classification of Hyperspectral Data by SVM , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Hal Caswell,et al.  12 – The Validation Problem , 1976 .

[46]  Andrew Thomas Hudak,et al.  LiDAR Utility for Natural Resource Managers , 2009, Remote. Sens..

[47]  Claude Vidal,et al.  Mapping Martinique's forests and other natural lands for land planning and development , 2009 .

[48]  Albert R. Stage,et al.  Most Similar Neighbor: An Improved Sampling Inference Procedure for Natural Resource Planning , 1995, Forest Science.

[49]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[50]  Juha Hyyppä,et al.  Advances in Forest Inventory Using Airborne Laser Scanning , 2012, Remote. Sens..

[51]  Michael A. Lefsky,et al.  Combining lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity , 2005 .

[52]  Michael C. Wimberly,et al.  Mapping wildland fuels and forest structure for land management: a comparison of nearest neighbor imputation and other methods , 2009 .

[53]  P. Gong,et al.  Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping , 2004 .

[54]  Sovan Lek,et al.  Artificial neural networks as a tool in ecological modelling, an introduction , 1999 .

[55]  Terje Gobakken,et al.  Deriving individual tree competition indices from airborne laser scanning , 2012 .

[56]  Edward J. Rykiel,et al.  Testing ecological models: the meaning of validation , 1996 .

[57]  Andrew P. Robinson,et al.  The relationship between effective plant area index and Landsat spectral response across elevation, solar insolation, and spatial scales in a northern Idaho forest , 2004 .

[58]  Andrew P. Robinson,et al.  Model validation using equivalence tests , 2004 .

[59]  Paul E. Gessler,et al.  Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling , 2005 .

[60]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[61]  G. E. Dixon Essential FVS: A User's Guide to the Forest Vegetation Simulator , 2007 .

[62]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[63]  Lalit Kumar,et al.  Comparative assessment of the measures of thematic classification accuracy , 2007 .

[64]  R. Valbuena,et al.  Influence of Global Navigation Satellite System errors in positioning inventory plots for tree-height distribution studies , 2011 .

[65]  S. Franklin,et al.  OBJECT-BASED ANALYSIS OF IKONOS-2 IMAGERY FOR EXTRACTION OF FOREST INVENTORY PARAMETERS , 2006 .

[66]  Erik Næsset,et al.  Using remotely sensed data to construct and assess forest attribute maps and related spatial products , 2010 .

[67]  Robert C. Parker,et al.  An Application of LiDAR in a Double-Sample Forest Inventory , 2004 .

[68]  J. Friedman Stochastic gradient boosting , 2002 .

[69]  Hailemariam Temesgen,et al.  Comparison of stratified and non-stratified most similar neighbour imputation for estimating stand tables , 2008 .

[70]  Pinliang Dong,et al.  Characterization of individual tree crowns using three-dimensional shape signatures derived from LiDAR data , 2009 .

[71]  William J. Ripple,et al.  Analysis of conifer forest regeneration using Landsat Thematic Mapper data , 1993 .

[72]  P. Gessler,et al.  Forest Service-- National AgroforestryCenter 1-1-2010 Landscape-scale parameterization of a tree-level forest growth model : a k-nearest neighbor imputation approach incorporating LiDAR data , 2013 .

[73]  Jiyuan Liu,et al.  Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data , 2002 .

[74]  Janet Franklin,et al.  Thematic mapper analysis of coniferous forest structure and composition , 1986 .

[75]  Alan R. Ek,et al.  The consequences of hierarchy for modeling in forest ecosystems , 2000 .

[76]  Nicholas C. Coops,et al.  Estimating stand structural details using nearest neighbor analyses to link ground data, forest cover maps, and Landsat imagery , 2008 .

[77]  A. Lister,et al.  Landscape scale mapping of forest inventory data by nearest neighbor classification , 2009 .

[78]  Paul E. Gessler,et al.  Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments , 2008 .

[79]  Nicholas L. Crookston,et al.  The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases , 2009 .

[80]  R. Astrup,et al.  Small area estimation of forest attributes in the Norwegian National Forest Inventory , 2012, European Journal of Forest Research.

[81]  John R. Jensen,et al.  Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data , 1999 .

[82]  A. Lister,et al.  A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data , 2012 .

[83]  Nicholas C. Coops,et al.  Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data , 2003, IEEE Trans. Geosci. Remote. Sens..

[84]  Alain F. Zuur,et al.  Fish stock identification through neural network analysis of parasite fauna , 2007 .

[85]  M. Gregory,et al.  Mapping gradients of community composition with nearest-neighbour imputation: extending plot data for landscape analysis , 2011 .

[86]  Michael J. Falkowski,et al.  Classification of Landsat images based on spectral and topographic variables for land-cover change detection in Zagros forests , 2012 .

[87]  J. Eitel,et al.  Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys , 2012 .

[88]  B. N. Baatuuwie,et al.  Evaluation of three classifiers in mapping forest stand types using medium resolution imagery: a case study in the Offinso Forest District, Ghana , 2011 .

[89]  C. Woodcock,et al.  Forest biomass estimation over regional scales using multisource data , 2004 .

[90]  Andrew O. Finley,et al.  Efficient k-nearest neighbor searches for multi-source forest attribute mapping , 2008 .

[91]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[92]  Jane R. Foster,et al.  Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[93]  Joachim Saborowski,et al.  Spatial prediction of forest stand variables , 2009, European Journal of Forest Research.

[94]  M. Vasconcelos,et al.  Spatial Prediction of Fire Ignition Probabilities: Comparing Logistic Regression and Neural Networks , 2001 .

[95]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .

[96]  S. Popescu,et al.  Lidar remote sensing of forest biomass : A scale-invariant estimation approach using airborne lasers , 2009 .

[97]  M. Ashton,et al.  Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests , 2004 .

[98]  P. Corona Integration of forest mapping and inventory to support forest management , 2010 .

[99]  R. McRoberts,et al.  Remote sensing support for national forest inventories , 2007 .

[100]  Terje Gobakken,et al.  Modeling forest songbird species richness using LiDAR-derived measures of forest structure , 2011 .

[101]  Philip A. Townsend,et al.  Utility of the Wavelet Transform for LAI Estimation Using Hyperspectral Data , 2013 .

[102]  P. Gessler,et al.  Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral satellite data , 2006 .

[103]  Steven J. Phillips,et al.  WHAT MATTERS FOR PREDICTING THE OCCURRENCES OF TREES: TECHNIQUES, DATA, OR SPECIES' CHARACTERISTICS? , 2007 .

[104]  S. Goetz,et al.  Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change , 2011 .

[105]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[106]  T. Lipping,et al.  Remote Sensing of Forest Health , 2009 .

[107]  V. Clark Baldwin,et al.  Predicting Diameter Distributions of Longleaf Pine Plantations: A Comparison Between Artificial Neural Networks and Other Accepted Methodologies , 2001 .

[108]  Lutz Fehrmann,et al.  Comparison of linear and mixed-effect regression models and a k-nearest neighbour approach for estimation of single-tree biomass , 2008 .

[109]  Philip A. Townsend,et al.  A Quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications , 2000 .

[110]  Mikko Kolehmainen,et al.  Neural Networks for the Prediction of Species-Specific Plot Volumes Using Airborne Laser Scanning and Aerial Photographs , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[111]  Warren B. Cohen,et al.  Relationship between LiDAR-derived forest canopy height and Landsat images , 2010 .

[112]  Sassan Saatchi,et al.  Estimation of Forest Fuel Load From Radar Remote Sensing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[113]  Arnt Kristian Gjertsen,et al.  Accuracy of forest mapping based on Landsat TM data and a kNN-based method , 2007 .

[114]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[115]  Jennifer L. R. Jensen,et al.  Estimation of biophysical characteristics for highly variable mixed-conifer stands using small-footprint lidar , 2006 .

[116]  G. Foody Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy , 2004 .

[117]  M. Maltamo,et al.  Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics , 2010 .

[118]  Ronald E. McRoberts,et al.  Diagnostic tools for nearest neighbors techniques when used with satellite imagery , 2009 .

[119]  William H. Cooke Forest/non-forest stratification in Georgia with Landsat Thematic Mapper data , 2000 .

[120]  W. Cohen,et al.  Patterns of covariance between forest stand and canopy structure in the Pacific Northwest , 2005 .

[121]  Shobha Kondragunta,et al.  Estimating forest biomass in the USA using generalized allometric models and MODIS land products , 2006 .

[122]  Jörgen Wallerman,et al.  Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data , 2007 .

[123]  C. Gleason,et al.  A Review of Remote Sensing of Forest Biomass and Biofuel: Options for Small-Area Applications , 2011 .

[124]  John A. Kupfer,et al.  Patterns of Forest Damage in a Southern Mississippi Landscape Caused by Hurricane Katrina , 2008, Ecosystems.

[125]  K. Lim,et al.  Operational implementation of a LiDAR inventory in Boreal Ontario , 2011 .

[126]  Juho Pitkänen,et al.  Point accuracy of a non-parametric method in estimation of forest characteristics with different satellite materials , 1996 .

[127]  R. G. Oderwald,et al.  Assessing Landsat classification accuracy using discrete multivariate analysis statistical techniques. , 1983 .

[128]  J. Evans,et al.  Gradient modeling of conifer species using random forests , 2009, Landscape Ecology.

[129]  M. Fladeland,et al.  Remote sensing for biodiversity science and conservation , 2003 .

[130]  Selwyn Piramuthu,et al.  Input data for decision trees , 2008, Expert Syst. Appl..

[131]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[132]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[133]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[134]  Yann Nouvellon,et al.  MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass , 2011 .

[135]  Warren B. Cohen,et al.  Key issues in making and using satellite-based maps in ecology : A primer , 2006 .

[136]  A. Pekkarinen,et al.  Estimation of forest stand volumes by Landsat TM imagery and stand-level field-inventory data , 2004 .

[137]  Greg C. Liknes,et al.  Assessing tree cover in agricultural landscapes using high-resolution aerial imagery , 2010 .

[138]  Eileen H. Helmer,et al.  Detailed maps of tropical forest types are within reach: Forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery , 2012 .

[139]  M. Neteler,et al.  Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps , 2011 .

[140]  Warren B. Cohen,et al.  Patterns of forest regrowth following clearcutting in western Oregon as determined from a Landsat time-series , 2007 .

[141]  John A. Scrivani,et al.  Lidar-based Mapping of Forest Volume and Biomass by Taxonomic Group Using Structurally Homogenous Segments , 2008 .

[142]  R. Valbuena,et al.  Forest canopy height retrieval using LiDAR data, medium-resolution satellite imagery and kNN estimation in Aberfoyle, Scotland , 2010 .

[143]  Hugh M Cartwright,et al.  Artificial Neural Networks in Biology and Chemistry - The Evolution of a New Analytical Tool , 2009, Artificial Neural Networks.

[144]  Roberta E. Martin,et al.  Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests , 2009 .

[145]  Stephen V. Stehman,et al.  A Critical Evaluation of the Normalized Error Matrix in Map Accuracy Assessment , 2004 .

[146]  M. D. Nelson,et al.  Conterminous U.S. and Alaska Forest Type Mapping Using Forest Inventory and Analysis Data , 2008 .

[147]  Petteri Packalen,et al.  Airborne laser scanning-based prediction of coarse woody debris volumes in a conservation area , 2008 .

[148]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[149]  Giles M. Foody,et al.  Status of land cover classification accuracy assessment , 2002 .

[150]  Ronald E. McRoberts,et al.  The effects of rectification and Global Positioning System errors on satellite image-based estimates of forest area , 2010 .

[151]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[152]  Johannes R. Sveinsson,et al.  Random Forests for land cover classification , 2006, Pattern Recognit. Lett..

[153]  Erik Næsset,et al.  Advances and emerging issues in national forest inventories , 2010 .

[154]  William A. Bechtold,et al.  The enhanced forest inventory and analysis program - national sampling design and estimation procedures , 2005 .

[155]  Layne T. Watson,et al.  An Adaptive Noise-Filtering Algorithm for AVIRIS Data With Implications for Classification Accuracy , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[156]  Hirokazu Yamamoto,et al.  Airborne laser scanning in forest management: individual tree identification and laser pulse penetration in a stand with different levels of thinning. , 2009 .

[157]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[158]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[159]  Achim Zeileis,et al.  Conditional variable importance for random forests , 2008, BMC Bioinformatics.

[160]  Lars Eklundh,et al.  Mapping insect defoliation in Scots pine with MODIS time-series data , 2009 .

[161]  J. Evans,et al.  Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. , 2010, Ecology.

[162]  P. Switzer,et al.  A transformation for ordering multispectral data in terms of image quality with implications for noise removal , 1988 .

[163]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[164]  Juha Hyyppä,et al.  Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data , 2012 .

[165]  M. Bauer,et al.  Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method , 2001 .

[166]  J. Holmgren,et al.  Estimation of tree lists from airborne laser scanning by combining single-tree and area-based methods , 2010 .

[167]  N. Coops,et al.  High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization , 2004 .

[168]  Mark O. Kimberley,et al.  Airborne scanning LiDAR in a double sampling forest carbon inventory , 2012 .

[169]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[170]  Jean-Philippe Gastellu-Etchegorry,et al.  Investigating the Utility of Wavelet Transforms for Inverting a 3-D Radiative Transfer Model Using Hyperspectral Data to Retrieve Forest LAI , 2013, Remote. Sens..

[171]  Niklaus E. Zimmermann,et al.  Predicting tree species presence and basal area in Utah: A comparison of stochastic gradient boosting, generalized additive models, and tree-based methods , 2006 .

[172]  Ronald E. McRoberts,et al.  Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique , 2002 .

[173]  W. Cohen,et al.  An improved strategy for regression of biophysical variables and Landsat ETM+ data. , 2003 .

[174]  Michael E. Goerndt,et al.  A comparison of small-area estimation techniques to estimate selected stand attributes using LiDAR-derived auxiliary variables , 2011 .

[175]  Xuezhi Wen,et al.  Recent Applications of Artificial Neural Networks in Forest Resource Management: An Overview , 1999 .

[176]  E. Næsset Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .

[177]  L. Ji,et al.  An Agreement Coefficient for Image Comparison , 2006 .

[178]  Philip J. Radtke,et al.  Combining FIA plot data with topographic variables: Are precise locations needed? , 2009 .

[179]  Johannes Breidenbach,et al.  Estimation of diameter distributions by means of airborne laser scanner data , 2008 .

[180]  P. Gessler,et al.  The multispectral separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees , 2010 .

[181]  Joanne C. White,et al.  The role of LiDAR in sustainable forest management , 2008 .

[182]  Hailemariam Temesgen,et al.  Comparison of Nearest Neighbor Methods for Estimating Basal Area and Stems per Hectare Using Aerial Auxiliary Variables , 2005, Forest Science.

[183]  N. Coops,et al.  Update of forest inventory data with lidar and high spatial resolution satellite imagery , 2008 .

[184]  C. Goulding,et al.  Adapting Finnish Multi-Source Forest Inventory Techniques to the New Zealand Preharvest Inventory , 1999 .

[185]  Fabio Maselli,et al.  Evaluation of statistical methods to estimate forest volume in a mediterranean region , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[186]  Hailemariam Temesgen,et al.  Imputing tree-lists from aerial attributes for complex stands of south-eastern British Columbia , 2003 .

[187]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[188]  A. Prasad,et al.  PREDICTING ABUNDANCE OF 80 TREE SPECIES FOLLOWING CLIMATE CHANGE IN THE EASTERN UNITED STATES , 1998 .

[189]  Ronald E. McRoberts,et al.  Estimating forest attribute parameters for small areas using nearest neighbors techniques , 2012 .

[190]  André Stumpf,et al.  Object-oriented mapping of landslides using Random Forests , 2011 .

[191]  Nicholas L. Crookston,et al.  Accuracy and equivalence testing of crown ratio models and assessment of their impact on diameter growth and basal area increment predictions of two variants of the Forest Vegetation Simulator , 2009 .

[192]  Alex C. Lee,et al.  Quantifying Australian forest floristics and structure using small footprint LiDAR and large scale aerial photography , 2006 .

[193]  R. Valbuena,et al.  Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality , 2013 .

[194]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[195]  Coeli M. Hoover,et al.  Forest Carbon Estimation Using the Forest Vegetation Simulator: Seven Things You Need to Know , 2011 .

[196]  Sakari Tuominen,et al.  Combining remote sensing, data from earlier inventories, and geostatistical interpolation in multisource forest inventory , 2003 .

[197]  W. Cohen,et al.  An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon , 2001 .

[198]  Patrick Johnson,et al.  Synergistic use of very high-frequency radar and discrete-return lidar for estimating biomass in temperate hardwood and mixed forests , 2011, Annals of Forest Science.

[199]  Benoit Rivard,et al.  Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery , 2006 .

[200]  M. Maltamo,et al.  Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation , 2007 .

[201]  Patrick Hostert,et al.  Land cover mapping of large areas using chain classification of neighboring Landsat satellite images , 2009 .

[202]  Erkki Tomppo,et al.  Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach , 2004 .

[203]  E. Næsset,et al.  Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data , 2010 .

[204]  Paul L. Patterson,et al.  Effects of registration errors between remotely sensed and ground data on estimators of forest area , 2003 .

[205]  L. Monika Moskal,et al.  Strengths and limitations of assessing forest density and spatial configuration with aerial LiDAR , 2011 .

[206]  Terje Gobakken,et al.  Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses , 2004 .

[207]  C. Daly,et al.  Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States , 2008 .

[208]  A. Hudak,et al.  A Comparison of Accuracy and Cost of LiDAR versus Stand Exam Data for Landscape Management on the Malheur National Forest , 2011, Journal of Forestry.

[209]  Piermaria Corona,et al.  Non-parametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems , 2008 .

[210]  F. Achard,et al.  A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals associated with deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation , 2012 .

[211]  Ariel E. Lugo,et al.  Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data , 1989, Forest Science.

[212]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[213]  E. Næsset Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia , 2007 .

[214]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[215]  R. Houghton,et al.  Mapping Russian forest biomass with data from satellites and forest inventories , 2007 .

[216]  Janet L. Ohmann,et al.  Predictive mapping of forest composition and structure with direct gradient analysis and nearest- neighbor imputation in coastal Oregon, U.S.A. , 2002 .

[217]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[218]  Janne Heiskanen,et al.  Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data , 2005 .

[219]  Hailemariam Temesgen,et al.  A comparison of selected parametric and imputation methods for estimating snag density and snag quality attributes , 2012 .

[220]  A. Hudak,et al.  Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability , 2009 .

[221]  Emilie B. Grossmann,et al.  Mapping ecological systems with a random forest model: tradeoffs between errors and bias , 2010 .

[222]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.

[223]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[224]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[225]  Jesús Muñoz,et al.  Comparison of statistical methods commonly used in predictive modelling , 2004 .

[226]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .

[227]  Nicholas L. Crookston,et al.  yaImpute: An R Package for kNN Imputation , 2008 .

[228]  Scott L. Powell,et al.  ANALYSIS OF BIOMASS DYNAMICS DERIVED FROM SPECTRAL TRAJECTORIES , 2006 .

[229]  M. Nilsson,et al.  Applications using estimates of forest parameters derived from satellite and forest inventory data , 2002 .

[230]  David M. Cairns,et al.  A comparison of methods for predicting vegetation type , 2001, Plant Ecology.

[231]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[232]  Sandra A. Brown,et al.  Spatial distribution of biomass in forests of the eastern USA , 1999 .

[233]  Filiberto Pla,et al.  Band Selection in Multispectral Images by Minimization of Dependent Information , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[234]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[235]  P. J. Curran,et al.  The importance of measurement error for certain procedures in remote sensing at optical wavelengths , 1986 .

[236]  Michel Verleysen,et al.  Model Selection with Cross-Validations and Bootstraps - Application to Time Series Prediction with RBFN Models , 2003, ICANN.

[237]  Brian R. Sturtevant,et al.  Estimation of forest structural parameters using 5 and 10 meter SPOT-5 satellite data , 2009 .

[238]  M. Maltamo,et al.  Variable selection strategies for nearest neighbor imputation methods used in remote sensing based forest inventory , 2012 .

[239]  M. Maltamo,et al.  The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .

[240]  J. Friedman Multivariate adaptive regression splines , 1990 .

[241]  A. Hudak,et al.  Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data , 2008 .

[242]  Merja Halme,et al.  Improving the accuracy of multisource forest inventory estimates to reducing plot location error — a multicriteria approach , 2001 .

[243]  T. Spies,et al.  Characterizing canopy gap structure in forests using wavelet analysis , 1992 .

[244]  G. De’ath MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES–ENVIRONMENT RELATIONSHIPS , 2002 .