Similarity Matches of Gene Expression Data Based on Wavelet Transform

This study presents a similarity-determining method for measuring regulatory relationships between pairs of genes from microarray time series data. The proposed similarity metrics are based on a new method to measure structural similarity to compare the quality of images. We make use of the Dual-Tree Wavelet Transform (DTWT) since it provides approximate shift invariance and maintain the structures between pairs of regulation related time series expression data. Despite the simplicity of the presented method, experimental results demonstrate that it enhances the similarity index when tested on known transcriptional regulatory genes.

[1]  Divyakant Agrawal,et al.  A comparison of DFT and DWT based similarity search in time-series databases , 2000, CIKM '00.

[2]  Tom Froese,et al.  Comparison of extrasystolic ECG signal classifiers using discrete wavelet transforms , 2006, Pattern Recognit. Lett..

[3]  Steven Skiena,et al.  Analysis Techniques for Microarray Time-Series Data , 2002, J. Comput. Biol..

[4]  Ada Wai-Chee Fu,et al.  Efficient time series matching by wavelets , 1999, Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337).

[5]  Ivan W. Selesnick,et al.  The design of approximate Hilbert transform pairs of wavelet bases , 2002, IEEE Trans. Signal Process..

[6]  Nick G. Kingsbury,et al.  Image texture description using complex wavelet transform , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[7]  Ronald W. Davis,et al.  A genome-wide transcriptional analysis of the mitotic cell cycle. , 1998, Molecular cell.

[8]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[9]  Divyakant Agrawal,et al.  Sequence Similarity Search Using Discrete Fourier and Wavelet Transformation Techniques , 2005, Int. J. Artif. Intell. Tools.

[10]  Luis Rueda,et al.  Advances in Image and Video Technology, Second Pacific Rim Symposium, PSIVT 2007, Santiago, Chile, December 17-19, 2007, Proceedings , 2007, PSIVT.

[11]  Hong Yan,et al.  Pattern recognition techniques for the emerging field of bioinformatics: A review , 2005, Pattern Recognit..

[12]  Jerome M. Shapiro,et al.  Embedded image coding using zerotrees of wavelet coefficients , 1993, IEEE Trans. Signal Process..

[13]  Zhen Ye,et al.  A complex wavelet domain Markov model for image denoising , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[14]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[15]  Oh-Jin Kwon,et al.  Region adaptive subband image coding , 1998, IEEE Trans. Image Process..

[16]  Holger H. Hoos,et al.  Inference of Transcriptional Regulation Relationships from Gene Expression Data , 2003, Bioinform..

[17]  C. Sidney Burrus,et al.  Complex wavelet transforms with allpass filters , 2003, Signal Process..

[18]  P. Morettin,et al.  A wavelet analysis for time series , 1998 .

[19]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[20]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Tardi Tjahjadi,et al.  Adaptive scale fixing for multiscale texture segmentation , 2006, IEEE Transactions on Image Processing.

[23]  Mong-Shu Lee,et al.  Image Similarity Comparison Using Dual-Tree Wavelet Transform , 2006, PSIVT.

[24]  Julian Magarey,et al.  Motion estimation using a complex-valued wavelet transform , 1998, IEEE Trans. Signal Process..