Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole‐Based Solution‐Processed Small Molecule Solar Cells

Charge transport and nongeminate recombination are investigated in two solution-processed small molecule bulk heterojunction solar cells consisting of diketopyrrolopyrrole (DPP)-based donor molecules, mono-DPP and bis-DPP, blended with [6,6]-phenyl-C71-butyric acid methyl ester (PCBM). While the bis-DPP system exhibits a high fill factor (62%) the mono-DPP system suffers from pronounced voltage dependent losses, which limit both the fill factor (46%) and short circuit current. A method to determine the average charge carrier density, recombination current, and effective carrier lifetime in operating solar cells as a function of applied bias is demonstrated. These results and light intensity measurements of the current-voltage characteristics indicate that the mono-DPP system is severely limited by nongeminate recombination losses. Further analysis reveals that the most significant factor leading to the difference in fill factor is the comparatively poor hole transport properties in the mono-DPP system (2 × 10-5 cm2 V-1 s-1 versus 34 × 10-5 cm2 V-1 s-1). These results suggest that future design of donor molecules for organic photovoltaics should aim to increase charge carrier mobility thereby enabling faster sweep out of charge carriers before they are lost to nongeminate recombination. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

[1]  Karl Leo,et al.  Impedance model of trap states for characterization of organic semiconductor devices , 2012 .

[2]  Richard H. Friend,et al.  Direct Measurement of Electric Field‐Assisted Charge Separation in Polymer:Fullerene Photovoltaic Diodes , 2010, Advanced materials.

[3]  C. Deibel,et al.  Influence of charge carrier mobility on the performance of organic solar cells , 2008, 0806.2249.

[4]  Thuc‐Quyen Nguyen,et al.  Quantification of Geminate and Non‐Geminate Recombination Losses within a Solution‐Processed Small‐Molecule Bulk Heterojunction Solar Cell , 2012, Advanced materials.

[5]  Thuc‐Quyen Nguyen,et al.  A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells , 2009 .

[6]  Ian A. Howard,et al.  Effect of Nongeminate Recombination on Fill Factor in Polythiophene/Methanofullerene Organic Solar Cells , 2010 .

[7]  Yuan Zhang,et al.  Solution‐Processed Ambipolar Field‐Effect Transistor Based on Diketopyrrolopyrrole Functionalized with Benzothiadiazole , 2012 .

[8]  Thuc‐Quyen Nguyen,et al.  Non‐Basic High‐Performance Molecules for Solution‐Processed Organic Solar Cells , 2012, Advanced materials.

[9]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[10]  Valentin D. Mihailetchi,et al.  Light intensity dependence of open-circuit voltage of polymer: fullerene solar cells , 2005 .

[11]  George F. A. Dibb,et al.  Analysis of the Relationship between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells , 2011 .

[12]  Yuan Zhang,et al.  A modular molecular framework for utility in small-molecule solution-processed organic photovoltaic devices , 2011 .

[13]  Thuc‐Quyen Nguyen,et al.  Effect of Charge Recombination on the Fill Factor of Small Molecule Bulk Heterojunction Solar Cells , 2011 .

[14]  Claire H. Woo,et al.  Efficient Small Molecule Bulk Heterojunction Solar Cells with High Fill Factors via Pyrene‐Directed Molecular Self‐Assembly , 2011, Advanced materials.

[15]  Thuc-Quyen Nguyen,et al.  Nanoscale Phase Separation and High Photovoltaic Efficiency in Solution‐Processed, Small‐Molecule Bulk Heterojunction Solar Cells , 2009 .

[16]  C. Deibel,et al.  Origin of reduced polaron recombination in organic semiconductor devices , 2009, 0907.2428.

[17]  R. Hamilton,et al.  Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices , 2010, Proceedings of the National Academy of Sciences.

[18]  Juan Bisquert,et al.  Charge carrier mobility and lifetime of organic bulk heterojunctions analyzed by impedance spectroscopy , 2008 .

[19]  Thuc‐Quyen Nguyen,et al.  A Low Band Gap, Solution Processable Oligothiophene with a Diketopyrrolopyrrole Core for Use in Organic Solar Cells , 2008 .

[20]  C. Deibel,et al.  A New Approach for Probing the Mobility and Lifetime of Photogenerated Charge Carriers in Organic Solar Cells Under Real Operating Conditions , 2012, Advanced materials.

[21]  C. Deibel,et al.  Comment on “Interface state recombination in organic solar cells” , 2010, 1006.4813.

[22]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[23]  Wei Lin Leong,et al.  Role of trace impurities in the photovoltaic performance of solution processed small-molecule bulk heterojunction solar cells , 2012 .

[24]  P. Murgatroyd,et al.  Theory of space-charge-limited current enhanced by Frenkel effect , 1970 .

[25]  Donal D. C. Bradley,et al.  Bimolecular recombination losses in polythiophene: Fullerene solar cells , 2008 .

[26]  M. Wienk,et al.  Quantifying Bimolecular Recombination Losses in Organic Bulk Heterojunction Solar Cells , 2011, Advanced materials.

[27]  Thuc‐Quyen Nguyen,et al.  Influence of Structural Variation on the Solid-State Properties of Diketopyrrolopyrrole-Based Oligophenylenethiophenes: Single-Crystal Structures, Thermal Properties, Optical Bandgaps, Energy Levels, Film Morphology, and Hole Mobility , 2012 .

[28]  Alan J. Heeger,et al.  Identifying a Threshold Impurity Level for Organic Solar Cells: Enhanced First‐Order Recombination Via Well‐Defined PC84BM Traps in Organic Bulk Heterojunction Solar Cells , 2011 .

[29]  G. Garcia‐Belmonte,et al.  Series resistance in organic bulk-heterojunction solar devices: Modulating carrier transport with fullerene electron traps , 2012 .

[30]  N. Tessler,et al.  Loss of photocurrent efficiency in low mobility semiconductors: Analytic approach to space charge effects , 2006 .

[31]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[32]  Alan J. Heeger,et al.  Recombination in polymer-fullerene bulk heterojunction solar cells , 2010 .

[33]  K. Hecht Zum Mechanismus des lichtelektrischen Primärstromes in isolierenden Kristallen , 1932 .

[34]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[35]  P. Blom,et al.  Identifying the Nature of Charge Recombination in Organic Solar Cells from Charge‐Transfer State Electroluminescence , 2012 .

[36]  Helmut Neugebauer,et al.  Charge Carrier Lifetime and Recombination in Bulk Heterojunction Solar Cells , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  N. Greenham,et al.  Bimolecular recombination in polymer electronic devices , 2008 .

[38]  Ian H. Campbell,et al.  Electrical impedance measurements of polymer light-emitting diodes , 1995 .

[39]  Steve Albrecht,et al.  On the Field Dependence of Free Charge Carrier Generation and Recombination in Blends of PCPDTBT/PC70BM: Influence of Solvent Additives. , 2012, The journal of physical chemistry letters.

[40]  J. Bisquert,et al.  Current‐Voltage Characteristics of Bulk Heterojunction Organic Solar Cells: Connection Between Light and Dark Curves , 2011 .

[41]  P. Blom,et al.  Diffusion-enhanced hole transport in thin polymer light-emitting diodes , 2008 .

[42]  F. Fabregat‐Santiago,et al.  Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[43]  Robert A. Street,et al.  Influence of series resistance on the photocurrent analysis of organic solar cells , 2011 .

[44]  Donal D. C. Bradley,et al.  Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/Methanofullerene Blends , 2005 .

[45]  Zhe Li,et al.  Phase-Dependent Photocurrent Generation in Polymer/Fullerene Bulk Heterojunction Solar Cells , 2011 .

[46]  Robert A. Street,et al.  Interface state recombination in organic solar cells , 2010 .

[47]  Yongsheng Chen,et al.  Solution Processable Rhodanine‐Based Small Molecule Organic Photovoltaic Cells with a Power Conversion Efficiency of 6.1% , 2012 .

[48]  P. Blom,et al.  Origin of the Reduced Fill Factor and Photocurrent in MDMO‐PPV:PCNEPV All‐Polymer Solar Cells , 2007 .

[49]  J. J. M. Vleggaar,et al.  Electron and hole transport in poly(p‐phenylene vinylene) devices , 1996 .

[50]  F. Laquai,et al.  Effect of External Bias on Nongeminate Recombination in Polythiophene/Methanofullerene Organic Solar Cells , 2011 .

[51]  J. C. de Mello,et al.  Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current , 2008 .

[52]  Alan J. Heeger,et al.  Charge Formation, Recombination, and Sweep‐Out Dynamics in Organic Solar Cells , 2012 .

[53]  Wei Lin Leong,et al.  Solution-processed small-molecule solar cells with 6.7% efficiency. , 2011, Nature materials.

[54]  Juliane Kniepert,et al.  Photogeneration and Recombination in P3HT/PCBM Solar Cells Probed by Time-Delayed Collection Field Experiments , 2011 .

[55]  Siegfried Karg,et al.  Light-emitting diodes based on poly-p-phenylene-vinylene: II. Impedance spectroscopy , 1997 .

[56]  Mm Martijn Wienk,et al.  Electron Transport in a Methanofullerene , 2003 .

[57]  J. C. de Mello,et al.  Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell , 2008 .