Estimating Nonlinear Economic Models Using Surrogate Transitions

We propose a novel combination of algorithms for jointly estimating parameters and unobservable states in a nonlinear state space system. We exploit an approximation to the marginal likelihood to guide a Particle Marginal Metropolis-Hastings algorithm. While this algorithm seemingly targets reduced dimension marginal distributions, it draws from a joint distribution of much higher dimension. The algorithm is demonstrated on a stochastic volatility model and a Real Business Cycle model with robust preferences.

[1]  Martin M. Andreasen Non-linear DSGE Models and The Optimized Particle Filter , 2010 .

[2]  F. Smets,et al.  An estimated dynamic stochastic general equilibrium model of the euro area. NBB Working Paper Nr. 35 , 2002 .

[3]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[4]  Frank Schorfheide,et al.  On the Fit and Forecasting Performance of New Keynesian Models , 2005, SSRN Electronic Journal.

[5]  R. Bidder,et al.  Doubts and Variability , 2010 .

[6]  Lars Peter Hansen,et al.  Robust Estimation and Control without Commitment , 2014 .

[7]  Larry G. Epstein,et al.  Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework , 1989 .

[8]  J. Rosenthal,et al.  General state space Markov chains and MCMC algorithms , 2004, math/0404033.

[9]  N. Shephard,et al.  BAYESIAN INFERENCE BASED ONLY ON SIMULATED LIKELIHOOD: PARTICLE FILTER ANALYSIS OF DYNAMIC ECONOMIC MODELS , 2011, Econometric Theory.

[10]  Tiangang Cui,et al.  Adaptive Error Modelling in MCMC Sampling for Large Scale Inverse Problems , 2011 .

[11]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[12]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[13]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[14]  Jesús Fernández-Villaverde,et al.  Estimating Dynamic Equilibrium Economies: Linear Versus Nonlinear Likelihood , 2004 .

[15]  Pablo A. Guerrón-Quintana,et al.  Risk Matters: The Real Effects of Volatility Shocks , 2009 .

[16]  Rudolph van der Merwe,et al.  The square-root unscented Kalman filter for state and parameter-estimation , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[17]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  Lawrence J. Christiano,et al.  Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy , 2005 .

[20]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[21]  Enate,et al.  Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter , 2003 .

[22]  M. Beaumont Estimation of population growth or decline in genetically monitored populations. , 2003, Genetics.

[23]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[24]  Lars Peter Hansen,et al.  Doubts or variability? , 2009, J. Econ. Theory.

[25]  Jun Yu,et al.  Automated Likelihood Based Inference for Stochastic Volatility Models , 2009 .

[26]  Frank Smets,et al.  An Estimated Stochastic Dynamic General Equilibrium Model of the Euro Area , 2002, SSRN Electronic Journal.

[27]  Ralph S. Silva,et al.  Particle filtering within adaptive Metropolis-Hastings sampling , 2009, 0911.0230.

[28]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[29]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[30]  S. J. Koopman Discussion of `Particle Markov chain Monte Carlo methods – C. Andrieu, A. Doucet and R. Holenstein’ [Review of: Particle Markov chain Monte Carlo methods] , 2010 .

[31]  Thomas J. Sargent,et al.  Two Models of Measurements and the Investment Accelerator , 1989, Journal of Political Economy.

[32]  Shie-Yui Liong,et al.  Efficient MCMC Schemes for Computationally Expensive Posterior Distributions , 2011, Technometrics.

[33]  Thomas D. Tallarini Risk-sensitive real business cycles☆ , 2000 .

[34]  Karen Willcox,et al.  Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems [Chapter 7] , 2010 .

[35]  Giorgio E. Primiceri,et al.  The Time Varying Volatility of Macroeconomic Fluctuations , 2006 .

[36]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[37]  A. P. Dawid,et al.  Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive Bayesian Integrals , 2003 .

[38]  Stefan M. Wild,et al.  Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation , 2008 .

[39]  Jules H. van Binsbergen,et al.  Working with Epstein-Zin Preferences : Computation and Likelihood Estimation of DSGE Models with Recursive Preferences , 2008 .