Comparison of adjoint‐based and feature‐based grid adaptation for functional outputs

[1]  J. C. Newman,et al.  Discrete direct and adjoint sensitivity analysis for arbitrary Mach number flows , 2006 .

[2]  M. Giles,et al.  Progress in adjoint error correction for integral functionals , 2004 .

[3]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[4]  Lafayette K. Taylor,et al.  High-resolution viscous flow simulations at arbitrary Mach number , 2003 .

[5]  Michael A. Park,et al.  Three-Dimensional Turbulent RANS Adjoint-Based Error Correction , 2003 .

[6]  M. Giles,et al.  Adjoint Error Correction for Integral Outputs , 2003 .

[7]  Michael Andrew Park,et al.  Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation , 2002 .

[8]  D. Venditti,et al.  Grid adaptation for functional outputs: application to two-dimensional inviscid flows , 2002 .

[9]  D. Venditti,et al.  Adjoint error estimation and grid adaptation for functional outputs: application to quasi-one-dimensional flow , 2000 .

[10]  David Anthony Venditti,et al.  Grid adaptation for functional outputs of compressible flow simulations , 2000 .

[11]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[12]  Chunhua Sheng,et al.  An investigation of parallel implicit solution algorithms for incompressible flows on multielement unstructured topologies , 2000 .

[13]  Michael B. Giles,et al.  Improved- lift and drag estimates using adjoint Euler equations , 1999 .

[14]  David L. Darmofal,et al.  A multilevel error estimation and grid adaptive strategy for improving the accuracy of integral outputs , 1999 .

[15]  Mark W. Beall,et al.  An Object-Oriented Framework for the Reliable Automated Solution of Problems in Mathematical Physics , 1999 .

[16]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[17]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[18]  Anthony T. Patera,et al.  Bounds for Linear–Functional Outputs of Coercive Partial Differential Equations : Local Indicators and Adaptive Refinement , 1998 .

[19]  J. Peraire,et al.  A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations , 1997 .

[20]  P. Spalart,et al.  On the sensitization of turbulence models to rotation and curvature , 1997 .

[21]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[22]  Timothy J. Baker,et al.  Mesh adaptation strategies for problems in fluid dynamics , 1997 .

[23]  Dimitri J. Mavriplis,et al.  Adaptive meshing techniques for viscous flow calculations on mixed element unstructured meshes , 1997 .

[24]  D. Mavriplis UNSTRUCTURED GRID TECHNIQUES , 1997 .

[25]  David L. Marcum,et al.  SOLUTION ADAPTIVE UNSTRUCTURED GRID GENERATION USING PSEUDO-PATTERN RECOGNITION TECHNIQUES , 1997 .

[26]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[27]  Nigel P. Weatherill,et al.  A procedure for efficient generation of solution adapted unstructured grids , 1995 .

[28]  David L. Marcum,et al.  Adaptive unstructured grid generation for viscous flow applications , 1995 .

[29]  Nigel P. Weatherill,et al.  Grid adaptation using a distribution of sources applied to inviscid compressible flow simulations , 1994 .

[30]  Nigel P. Weatherill,et al.  Grid generation by the delaunay triangulation , 1994 .

[31]  Nigel P. Weatherill,et al.  Adaptive inviscid flow solutions for aerospace geometries on efficiently generated unstructured tetrahedral meshes , 1993 .

[32]  Nigel P. Weatherill,et al.  Adaptivity techniques for compressible inviscid flows , 1993 .

[33]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[34]  R. Farwig,et al.  Multivariate interpolation of arbitrarily spaced data by moving least squares methods , 1986 .

[35]  Reinhard Farwig,et al.  Rate of convergence of Shepard's global interpolation formula , 1986 .

[36]  Ivo Babuška,et al.  The post-processing approach in the finite element method—part 1: Calculation of displacements, stresses and other higher derivatives of the displacements , 1984 .

[37]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[38]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[39]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[40]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .