Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers

Dynamic systems of an arbitrary real order (fractional-order systems) are considered. The concept of a fractional-order PI/sup /spl lambda//D/sup /spl mu//-controller, involving fractional-order integrator and fractional-order differentiator, is proposed. The Laplace transform formula for a new function of the Mittag-Leffler-type made it possible to obtain explicit analytical expressions for the unit-step and unit-impulse response of a linear fractional-order system with fractional-order controller for both open- and closed-loops. An example demonstrating the use of the obtained formulas and the advantages of the proposed PI/sup /spl lambda//D/sup /spl mu//-controllers is given.

[1]  Igor Podlubny,et al.  The Laplace Transform Method for Linear Differential Equations of the Fractional Order , 1997, funct-an/9710005.

[2]  M. Nakagawa,et al.  Basic Characteristics of a Fractance Device , 1992 .

[3]  C. Friedrich Relaxation and retardation functions of the Maxwell model with fractional derivatives , 1991 .

[4]  A. Méhauté,et al.  Introduction to transfer and motion in fractal media: The geometry of kinetics , 1983 .

[5]  M. E. Bise,et al.  Fractional calculus application in control systems , 1990, IEEE Conference on Aerospace and Electronics.

[6]  Chr. Friedrich A delta-function method for the n-th approximation of relaxation or retardation time spectrum from dynamic data , 1991 .

[7]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[8]  Steven B. Skaar,et al.  Computational results for a feedback control for a rotating viscoelastic beam , 1994 .

[9]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[10]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[11]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[12]  W. Glöckle,et al.  A fractional model for mechanical stress relaxation , 1991 .

[13]  S. Westerlund,et al.  Capacitor theory , 1994 .

[14]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[15]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[16]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[17]  K. B. Oldham,et al.  Analogue instrumentation for processing polarographic data , 1983 .

[18]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[19]  Martin Ochmann,et al.  Representation of the absorption of nonlinear waves by fractional derivatives , 1993 .