Understanding and identifying the oxygen transport mechanisms through a mixed-conductor membrane

[1]  J. M. Serra,et al.  Oxygen permeation and stability of CaTi0.73Fe0.18Mg0.09O3−δ oxygen-transport membrane , 2017 .

[2]  Astri Bjørnetun Haugen,et al.  Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d composite asymmetric oxygen permeation membranes supported on magnesium oxide , 2017 .

[3]  P. Geffroy,et al.  Surface exchange model for ITM membrane in transient stage , 2017 .

[4]  Shaomin Liu,et al.  A novel CO2-resistant ceramic dual-phase hollow fiber membrane for oxygen separation , 2017 .

[5]  Xuefeng Zhu,et al.  Improving oxygen permeation of MIEC membrane reactor by enhancing the electronic conductivity under intermediate-low oxygen partial pressures , 2016 .

[6]  Fangyi Liang,et al.  Coupling of N2O decomposition with CO2 reforming of CH4 in novel cobalt-free BaFe0.9Zr0.05Al0.05O3- .DELTA. oxygen transport membrane reactor , 2016 .

[7]  P. Geffroy,et al.  Impact of microstructure on oxygen semi-permeation performance of perovskite membranes: Understanding of oxygen transport mechanisms , 2016 .

[8]  A. Ghoniem,et al.  A two-step surface exchange mechanism and detailed defect transport to model oxygen permeation through the La0.9Ca0.1FeO3−δmixed-conductor , 2016 .

[9]  J. Malzbender,et al.  Creep behavior of porous La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membrane supports , 2015 .

[10]  P. Geffroy,et al.  Effect of cation substitution at the B site on the oxygen semi-permeation flux in La0.5Ba0.5Fe0.7B0.3O3−δ dense perovskite membranes with B = Al, Co, Cu, Mg, Mn, Ni, Sn, Ti and Zn (part II) , 2015 .

[11]  P. Geffroy,et al.  Identification of the rate-determining step in oxygen transport through La(1−x)SrxFe(1−y)GayO3−δ perovskite membranes , 2015 .

[12]  P. Geffroy,et al.  Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3−δ and La0.5A0.5Fe0.7Co0.3O3−δ dense perovskite membranes with A = Ca, Sr and Ba (part I) , 2014 .

[13]  P. Geffroy,et al.  Surface Exchange Model for MIEC Membrane in Transient Stage , 2014 .

[14]  P. Geffroy,et al.  New route for high oxygen semi-permeation through surface-modified dense La1−xSrxFe1−yGayO3−δ perovskite membranes , 2014 .

[15]  P. Geffroy,et al.  Evaluating oxygen diffusion, surface exchange and oxygen semi-permeation in Ln2NiO4+δ membranes (Ln=La, Pr and Nd) , 2014 .

[16]  P. Geffroy,et al.  Elaboration of La1−xSrxFe1−yGayO3−δ multilayer membranes by tape casting and co-firing for syngas application , 2013 .

[17]  A. Feldhoff,et al.  Effect of microstructure on oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and SrCo0.8Fe0.2O3−δ membranes , 2013 .

[18]  Haihui Wang,et al.  Dense ceramic oxygen permeable membranes and catalytic membrane reactors , 2013 .

[19]  P. Geffroy,et al.  Rational selection of MIEC materials in energy production processes , 2013 .

[20]  Jürgen Caro,et al.  High-purity oxygen production by a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3-delta tube membrane , 2012 .

[21]  J. Malzbender,et al.  Creep behavior and its correlation with defect chemistry of La0.58Sr0.4Co0.2Fe0.8O3−δ , 2012 .

[22]  P. Geffroy,et al.  Influence of Oxygen Surface Exchanges on OxygenSemi-Permeation through La(1−x)SrxFe(1−y)GayO3−δDense Membrane , 2011 .

[23]  José M. Serra,et al.  Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2011 .

[24]  R. Castillo,et al.  Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation , 2011 .

[25]  P. Geffroy,et al.  La(1−x)SrxFe(1−y)GayO3−δ perovskite membrane: Oxygen semi-permeation, thermal expansion coefficient and chemical stability under reducing conditions , 2011 .

[26]  J. Kretzschmar,et al.  Oxygen exchange-limited transport and surface activation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ capillary membranes , 2011 .

[27]  J. Kilner,et al.  Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3 − δ , 2010 .

[28]  P. Geffroy,et al.  Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La(1−x)SrxFe(1−y)GayO3−δ perovskite membranes , 2010 .

[29]  W. Jin,et al.  CO2-tolerant mixed conducting oxide for catalytic membrane reactor , 2009 .

[30]  A. Feldhoff,et al.  Influence of grain size on the oxygen permeation performance of perovskite-type (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3−δ membranes , 2008 .

[31]  Jaka Sunarso,et al.  Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation , 2008 .

[32]  Zongping Shao,et al.  Significant effects of sintering temperature on the performance of La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen selective membranes , 2007 .

[33]  D. P. Fagg,et al.  High oxygen permeability in fluorite-type Ce0.8Pr0.2O2−δ via the use of sintering aids , 2007 .

[34]  Stuart B. Adler,et al.  Mechanisms and Rate Laws for Oxygen Exchange on Mixed-Conducting Oxide Surfaces , 2007, ECS Transactions.

[35]  D. P. Fagg,et al.  Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8-xPr0.2O2-δ, x = 0, 0.15, 0.2 , 2006 .

[36]  R. A. Souza A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. , 2006 .

[37]  T. Chartier,et al.  Microstructure and oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3−δ membrane containing magnesia as dispersed second phase particles , 2006 .

[38]  J. Caro,et al.  Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes , 2005 .

[39]  D. P. Fagg,et al.  Mixed conductivity, thermal expansion, and oxygen permeability of Ce(Pr,Zr)O2 − δ , 2005 .

[40]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[41]  Henricus J.M. Bouwmeester,et al.  Dense ceramic membranes for methane conversion , 2003 .

[42]  Xin Guo,et al.  Grain size dependent grain boundary defect structure: case of doped zirconia , 2003 .

[43]  V. Kharton,et al.  Oxygen Permeability and Ionic Conductivity of Perovskite-Related La0.3Sr0.7Fe ( Ga ) O 3 − δ , 2002 .

[44]  N. Wu,et al.  Oxygen Surface Exchange in Mixed Ionic Electronic Conductors: Application to La0.5Sr0.5Fe0.8Ga0.2 O 3 − δ , 2000 .

[45]  R. A. De Souza,et al.  A SIMS study of oxygen tracer diffusion and surface exchange in La0.8Sr0.2MnO3+δ , 2000 .

[46]  K. Wiik,et al.  Prospects and problems of dense oxygen permeable membranes , 2000 .

[47]  G. C. Mather,et al.  Synthesis and characterisation of La0·95Sr0·05GaO3−δ, La0·95Sr0·05AlO3−δ and Y0·95Sr0·05AlO3−δ , 1999 .

[48]  T. Ishihara,et al.  Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides , 1998 .

[49]  J. Maier On the correlation of macroscopic and microscopic rate constants in solid state chemistry , 1998 .

[50]  J. Kilner,et al.  Surface oxygen exchange of La0.3Sr0.7CoO3-d , 1997 .

[51]  J. E. Elshof,et al.  Oxygen Exchange and Diffusion Coefficients of Strontium‐Doped Lanthanum Ferrites by Electrical Conductivity Relaxation , 1997 .

[52]  Roger B. Poeppel,et al.  Dense ceramic membranes for partial oxidation of methane to syngas , 1995 .

[53]  B. Steele,et al.  Effect of rapid cooling on the grain boundary conductivity of yttria partially stabilized zirconia , 1986 .

[54]  J. Mizusaki,et al.  Diffusion of oxide ions in LaFeO3 single crystal , 1984 .

[55]  Graeme E. Murch,et al.  The haven ratio in fast ionic conductors , 1982 .

[56]  P. Geffroy,et al.  Determination of Oxygen Diffusion Coefficients in La1-xSrxFe1-yGayO3-δ Perovskites Using Oxygen Semi-Permeation and Conductivity Relaxation Methods , 2014 .

[57]  P. Geffroy,et al.  The Impact of Experimental Factors on Oxygen Semi-Permeation Measurements , 2013 .

[58]  B. Sundén,et al.  Grading the amount of electrochemcial active sites along the main flow direction of an SOFC , 2013 .

[59]  J. Rishpon,et al.  Electrochemical Biosensing for Direct Biopsy Slices Screening for Colorectal Cancer Detection , 2011 .

[60]  P. Buffat,et al.  Correlation between oxygen transport properties and microstructure in La0.5Sr0.5FeO3−δ , 2005 .