Quantum corrections to holographic mutual information

A bstractWe compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal [2] this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and provide in this way a non-trivial check of the FLM proposal.

[1]  C. Herzog,et al.  Thermal corrections to Rényi entropies for free fermions , 2015, 1506.06757.

[2]  M. Raamsdonk,et al.  Universality of Gravity from Entanglement , 2014, 1405.2933.

[3]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory , 2009, 0905.2069.

[4]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[5]  J. Cardy Some results on the mutual information of disjoint regions in higher dimensions , 2013, 1304.7985.

[6]  Eric Perlmutter Comments on Rényi entropy in AdS3/CFT2 , 2013, 1312.5740.

[7]  Prompt J/psi production at the LHC , 2001, hep-ph/0111463.

[8]  Matthew Headrick,et al.  Entanglement Renyi entropies in holographic theories , 2010, 1006.0047.

[9]  Bin Chen,et al.  On short interval expansion of Rényi entropy , 2013, 1309.5453.

[10]  Bin Chen,et al.  Holographic Rényi entropy in AdS3/LCFT2 correspondence , 2014, 1401.0261.

[11]  H. Schnitzer Mutual Renyi information for two disjoint compound systems , 2014, 1406.1161.

[12]  Onkar Parrikar,et al.  Shape dependence of entanglement entropy in conformal field theories , 2015, 1511.05179.

[13]  T. Takayanagi,et al.  Double‐trace deformations and entanglement entropy in AdS , 2015, 1511.07194.

[14]  T. Faulkner Bulk emergence and the RG flow of entanglement entropy , 2014, 1412.5648.

[15]  C. Herzog Universal thermal corrections to entanglement entropy for conformal field theories on spheres , 2014, 1407.1358.

[16]  Christophe Delaere,et al.  Measurement of Z-pair production in e(+)e(-) collisions and constraints on anomalous neutral gauge couplings , 2009 .

[17]  Bin Chen,et al.  Single interval Rényi entropy at low temperature , 2014, 1405.6254.

[18]  M. Beccaria,et al.  On the next-to-leading holographic entanglement entropy in AdS3/CFT2 , 2014, 1402.0659.

[19]  Bin Chen,et al.  Holographic Rényi entropy for CFT with W symmetry , 2013, 1312.5510.

[20]  Zechuan Zheng,et al.  Holographic Rényi entropy of single interval on Torus: With W symmetry , 2015, 1507.00183.

[21]  Stefan Leichenauer Thermal corrections to entanglement entropy from holography , 2015, 1502.07348.

[22]  T. Faulkner The Entanglement Renyi Entropies of Disjoint Intervals in AdS/CFT , 2013, 1303.7221.

[23]  H. Schnitzer,et al.  Large distance expansion of mutual information for disjoint disks in a free scalar theory , 2015, 1505.03757.

[24]  J. Cardy,et al.  Entanglement entropy of two disjoint intervals in conformal field theory: II , 2010, 1011.5482.

[25]  Bin Chen,et al.  Holographic calculation for large interval Rényi entropy at high temperature , 2015, 1506.03206.

[26]  Supersymmetric gauge theories and the AdS / CFT correspondence , 2002, hep-th/0201253.

[27]  Noburo Shiba Entanglement entropy of two spheres , 2012, 1201.4865.

[28]  Robert C. Myers,et al.  Towards a derivation of holographic entanglement entropy , 2011, 1102.0440.

[29]  Xi Dong,et al.  Holographic entanglement beyond classical gravity , 2013, 1306.4682.

[30]  Netta Engelhardt,et al.  Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime , 2014, 1408.3203.

[31]  Bin Chen,et al.  Large interval limit of Rényi entropy at high temperature , 2014, 1412.0763.