Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds.

[1]  Gangfeng Ouyang,et al.  Fabrication of a polymeric composite incorporating metal-organic framework nanosheets for solid-phase microextraction of polycyclic aromatic hydrocarbons from water samples. , 2017, Analytica chimica acta.

[2]  B. Tan,et al.  Hypercrosslinked porous polymer materials: design, synthesis, and applications. , 2017, Chemical Society reviews.

[3]  Dingcai Wu,et al.  Powdery polymer and carbon aerogels with high surface areas for high-performance solid phase microextraction coatings. , 2017, Nanoscale.

[4]  Gang Wang,et al.  A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds , 2016 .

[5]  Gangfeng Ouyang,et al.  Calibration of the complex matrix effects on the sampling of polycyclic aromatic hydrocarbons in milk samples using solid phase microextraction. , 2016, Analytica chimica acta.

[6]  Juan Zheng,et al.  Knitting aromatic polymers for efficient solid-phase microextraction of trace organic pollutants. , 2016, Journal of chromatography. A.

[7]  Jiangang Chen,et al.  Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams , 2015 .

[8]  Ming-lin Wang,et al.  In situ hydrothermal growth of ytterbium-based metal-organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples. , 2015, Journal of chromatography. A.

[9]  Dingcai Wu,et al.  The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles. , 2015, Nanoscale.

[10]  Dingcai Wu,et al.  Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre. , 2015, Nanoscale.

[11]  Juan Zheng,et al.  Mesoporous TiO₂ nanoparticles for highly sensitive solid-phase microextraction of organochlorine pesticides. , 2015, Analytica chimica acta.

[12]  A. Dazzi,et al.  Conducting polymer nanostructures for photocatalysis under visible light. , 2015, Nature materials.

[13]  A. Cooper Materials chemistry: Cooperative carbon capture , 2015, Nature.

[14]  Buyin Li,et al.  Multifunctional microporous organic polymers , 2014 .

[15]  Gangfeng Ouyang,et al.  In vivo tracing uptake and elimination of organic pesticides in fish muscle. , 2014, Environmental science & technology.

[16]  D. Yuan,et al.  Multiple monolithic fiber solid-phase microextraction: a new extraction approach for aqueous samples. , 2014, Journal of chromatography. A.

[17]  S. Dai,et al.  Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates , 2014, Nature Communications.

[18]  A. Nagai,et al.  Conjugated microporous polymers: design, synthesis and application. , 2013, Chemical Society reviews.

[19]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[20]  H. Herrmann,et al.  Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). , 2012, Chemical Society reviews.

[21]  W. Wang,et al.  Covalent organic frameworks. , 2012, Chemical Society reviews.

[22]  M. D. de Luna,et al.  Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. , 2012, Journal of hazardous materials.

[23]  F. Švec Quest for organic polymer-based monolithic columns affording enhanced efficiency in high performance liquid chromatography separations of small molecules in isocratic mode. , 2012, Journal of chromatography. A.

[24]  Lihua Zhu,et al.  Molecular imprinting for removing highly toxic organic pollutants. , 2012, Chemical communications.

[25]  J. Pawliszyn,et al.  Sampling-rate calibration for rapid and nonlethal monitoring of organic contaminants in fish muscle by solid-phase microextraction. , 2011, Environmental science & technology.

[26]  G. Rounaghi,et al.  A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flame ionization detector. , 2011, Journal of chromatography. A.

[27]  Heping Ma,et al.  Synthesis of a porous aromatic framework for adsorbing organic pollutants application , 2011 .

[28]  J. Pawliszyn,et al.  Nondestructive sampling of living systems using in vivo solid-phase microextraction. , 2011, Chemical reviews.

[29]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[30]  Janusz Pawliszyn,et al.  Recent developments in solid-phase microextraction , 2009, Analytical and bioanalytical chemistry.

[31]  A. Cooper,et al.  Microporous Organic Polymers for Methane Storage , 2008 .

[32]  Neil L. Campbell,et al.  Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.

[33]  F. Gobas,et al.  Food Web–Specific Biomagnification of Persistent Organic Pollutants , 2007, Science.

[34]  C. Serre,et al.  Microwave Synthesis of Chromium Terephthalate MIL‐101 and Its Benzene Sorption Ability , 2007 .

[35]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[36]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[37]  J. Pawliszyn,et al.  Solid phase microextraction with thermal desorption using fused silica optical fibers , 1990 .

[38]  C. Su,et al.  Preparation and characterization of metal-organic framework MIL-101(Cr)-coated solid-phase microextraction fiber. , 2015, Analytica chimica acta.