Global existence and nonexistence for nonlinear wave equations with damping and source terms

We consider an initial-boundary value problem for a nonlinear wave equation in one space dimension. The nonlinearity features the damping term |u| m-1 u t and a source term of the form |u| p-1 u, with m, p > 1. We show that whenever m > p, then local weak solutions are global. On the other hand, we prove that whenever p > m and the initial energy is negative, then local weak solutions cannot be global, regardless of the size of the initial data.

[1]  D. A. Kearns On Solutions of Linear Differential Equation , 1960 .

[2]  Howard A. Levine,et al.  Global Existence and Nonexistence Theorems for Quasilinear Evolution Equations of Formally Parabolic Type , 1998 .

[3]  D. Ang,et al.  Mixed problem for some semi-linear wave equation with a nonhomogeneous condition , 1988 .

[4]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[5]  I. Segal Non-Linear Semi-Groups , 1963 .

[6]  Howard A. Levine,et al.  Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations , 1974 .

[7]  Konrad Jörgens,et al.  Das Anfangswertproblem in Großen für eine Klasse nichtlinearer Wellengleichungen , 1961 .

[8]  Global solutions to boundary value problems for a nonlinear wave equation in high space dimensions , 2001 .

[9]  P. Grisvard Équations différentielles abstraites , 1969 .

[10]  Howard A. Levine,et al.  Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation , 1997 .

[11]  Hideo Kawarada,et al.  On Solutions of Nonlinear Wave Equations , 1971 .

[12]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[13]  Glenn F. Webb,et al.  Existence and Asymptotic Behavior for a Strongly Damped Nonlinear Wave Equation , 1980, Canadian Journal of Mathematics.

[14]  Irena Lasiecka,et al.  Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. II. General boundary data , 1991 .

[15]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .

[16]  Irena Lasiecka,et al.  A cosine operator approach to modelingL2(0,T; L2 (Γ))—Boundary input hyperbolic equations , 1981 .

[17]  R. Glassey Blow-up theorems for nonlinear wave equations , 1973 .

[18]  R. Temam Navier-Stokes Equations , 1977 .

[19]  D. Sattinger,et al.  Saddle points and instability of nonlinear hyperbolic equations , 1975 .

[20]  P. Grisvard,et al.  Caractérisation de quelques espaces d'interpolation , 1967 .

[21]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[22]  Jacques-Louis Lions,et al.  Some non-linear evolution equations , 1965 .

[23]  R. Seeley Interpolation in $L^{p}$ with boundary conditions , 1972 .

[24]  Howard A. Levine,et al.  Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation , 1998 .

[25]  John M. Ball,et al.  REMARKS ON BLOW-UP AND NONEXISTENCE THEOREMS FOR NONLINEAR EVOLUTION EQUATIONS , 1977 .