Topological degree theory and local analysis of area preserving maps

We consider methods based on the topological degree theory to compute periodic orbits of area preserving maps. Numerical approximations to the Kronecker integral give the number of fixed points of the map provided that the integration step is “small enough.” Since in any neighborhood of a fixed point the map gets four different combinations of its algebraic signs we use points on a lattice to detect the candidate fixed points by selecting boxes whose corners show all combinations of signs. This method and the Kronecker integral can be applied to bounded continuous maps such as the beam–beam map. On the other hand, they cannot be applied to maps defined on the torus, such as the standard map which has discontinuity curves propagating by iteration. Although the use of the characteristic bisection method is, in some cases, unable to detect all fixed points up to a given order, their distribution gives us a clear picture of the dynamics of the map.

[1]  K. Sikorski Bisection is optimal , 1982 .

[2]  Michael N. Vrahatis,et al.  Locating and Computing All the Simple Roots and Extrema of a Function , 1996, SIAM J. Sci. Comput..

[3]  Michael N. Vrahatis,et al.  Efficient Method for Computing with Certainty Periodic Orbits on a Surface of Section , 2002 .

[4]  Michael N. Vrahatis,et al.  PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .

[5]  G. Servizi,et al.  A quantitative bifurcation analysis of Hénon-like 2D maps , 1996 .

[6]  Michael N. Vrahatis,et al.  Computing with certainty individual members of families of periodic orbits of a given period , 2001 .

[7]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[8]  Michael N. Vrahatis,et al.  An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .

[9]  Giorgios Kollias,et al.  Bifurcations of beam-beam like maps , 2000 .

[10]  R. MacKay,et al.  Linear stability of symplectic maps , 1987 .

[11]  Ch. Skokos,et al.  On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems , 2001 .

[12]  Michael N. Vrahatis,et al.  Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.

[13]  G. Contopoulos,et al.  Distribution of periodic orbits and the homoclinic tangle , 1996 .

[14]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[15]  Frank Stenger,et al.  Computing the topological degree of a mapping inRn , 1975 .

[16]  Michael N. Vrahatis,et al.  A short proof and a generalization of Miranda’s existence theorem , 1989 .

[17]  Emile Picard Sur le nombre des racines communes à plusieurs équations simultanées , 1889 .

[18]  Michael N. Vrahatis,et al.  On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..

[19]  Carl P. Dettmann,et al.  Stability ordering of cycle expansions , 1997 .

[20]  Michael N. Vrahatis,et al.  Algorithm 666: Chabis: a mathematical software package for locating and evaluating roots of systems of nonlinear equations , 1988, TOMS.

[21]  Cornelis H. Slump,et al.  On the calculation of the exact number of zeroes of a set of equations , 2005, Computing.

[22]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[23]  Ezio Todesco,et al.  Giotto:. a Code for the Nonlinear Analysis of Area-Preserving Mappings , 1995 .

[24]  Michael N. Vrahatis,et al.  Structure and Breakdown of Invariant Tori in a 4-D Mapping Model of Accelerator Dynamics , 1997 .

[25]  M. N. Vrahatisa,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2000 .

[26]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[27]  Carl P. Dettmann,et al.  Computing the diffusion coefficient for intermittent maps: Resummation of stability ordered cycle expansions , 1998 .

[28]  Drossos,et al.  Method for computing long periodic orbits of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[30]  Ezio Todesco,et al.  A normal form approach to the theory of nonlinear betatronic motion , 1994 .

[31]  Michael N. Vrahatis,et al.  Locating and Computing Arbitrarily Distributed Zeros , 1999, SIAM J. Sci. Comput..

[32]  J. Cronin Fixed points and topological degree in nonlinear analysis , 1995 .