Topological degree theory and local analysis of area preserving maps
暂无分享,去创建一个
Michael N. Vrahatis | Giorgio Turchetti | G. Servizi | Ch. Skokos | G. Servizi | G. Turchetti | C. Polymilis | C. Polymilis | C. Skokos | M. Vrahatis
[1] K. Sikorski. Bisection is optimal , 1982 .
[2] Michael N. Vrahatis,et al. Locating and Computing All the Simple Roots and Extrema of a Function , 1996, SIAM J. Sci. Comput..
[3] Michael N. Vrahatis,et al. Efficient Method for Computing with Certainty Periodic Orbits on a Surface of Section , 2002 .
[4] Michael N. Vrahatis,et al. PERIODIC ORBITS AND INVARIANT SURFACES OF 4D NONLINEAR MAPPINGS , 1996 .
[5] G. Servizi,et al. A quantitative bifurcation analysis of Hénon-like 2D maps , 1996 .
[6] Michael N. Vrahatis,et al. Computing with certainty individual members of families of periodic orbits of a given period , 2001 .
[7] B. Chirikov. A universal instability of many-dimensional oscillator systems , 1979 .
[8] Michael N. Vrahatis,et al. An efficient method for locating and computing periodic orbits of nonlinear mappings , 1995 .
[9] Giorgios Kollias,et al. Bifurcations of beam-beam like maps , 2000 .
[10] R. MacKay,et al. Linear stability of symplectic maps , 1987 .
[11] Ch. Skokos,et al. On the stability of periodic orbits of high dimensional autonomous Hamiltonian systems , 2001 .
[12] Michael N. Vrahatis,et al. Solving systems of nonlinear equations using the nonzero value of the topological degree , 1988, TOMS.
[13] G. Contopoulos,et al. Distribution of periodic orbits and the homoclinic tangle , 1996 .
[14] John M. Greene,et al. A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.
[15] Frank Stenger,et al. Computing the topological degree of a mapping inRn , 1975 .
[16] Michael N. Vrahatis,et al. A short proof and a generalization of Miranda’s existence theorem , 1989 .
[17] Emile Picard. Sur le nombre des racines communes à plusieurs équations simultanées , 1889 .
[18] Michael N. Vrahatis,et al. On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree , 2002, J. Complex..
[19] Carl P. Dettmann,et al. Stability ordering of cycle expansions , 1997 .
[20] Michael N. Vrahatis,et al. Algorithm 666: Chabis: a mathematical software package for locating and evaluating roots of systems of nonlinear equations , 1988, TOMS.
[21] Cornelis H. Slump,et al. On the calculation of the exact number of zeroes of a set of equations , 2005, Computing.
[22] M. Hénon. Numerical study of quadratic area-preserving mappings , 1969 .
[23] Ezio Todesco,et al. Giotto:. a Code for the Nonlinear Analysis of Area-Preserving Mappings , 1995 .
[24] Michael N. Vrahatis,et al. Structure and Breakdown of Invariant Tori in a 4-D Mapping Model of Accelerator Dynamics , 1997 .
[25] M. N. Vrahatisa,et al. Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2000 .
[26] John E. Dennis,et al. Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.
[27] Carl P. Dettmann,et al. Computing the diffusion coefficient for intermittent maps: Resummation of stability ordered cycle expansions , 1998 .
[28] Drossos,et al. Method for computing long periodic orbits of dynamical systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[29] James M. Ortega,et al. Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.
[30] Ezio Todesco,et al. A normal form approach to the theory of nonlinear betatronic motion , 1994 .
[31] Michael N. Vrahatis,et al. Locating and Computing Arbitrarily Distributed Zeros , 1999, SIAM J. Sci. Comput..
[32] J. Cronin. Fixed points and topological degree in nonlinear analysis , 1995 .