Socio-economic impacts of low-carbon power generation portfolios: Strategies with and without CCS for the Netherlands

[1]  B. Bakshi,et al.  A sequential input–output framework to analyze the economic and environmental implications of energy policies: Gas taxes and fuel subsidies , 2016 .

[2]  Mikel González-Eguino,et al.  Towards a green energy economy? Tracking the employment effects of low-carbon technologies in the European Union , 2016 .

[3]  Martin K. Patel,et al.  Contributing to a green energy economy? A macroeconomic analysis of an energy efficiency program operated by a Swiss utility , 2016 .

[4]  João F.D. Rodrigues,et al.  Environmental, economic, and social impacts of feed-in tariffs: A Portuguese perspective 2000–2010 , 2016 .

[5]  A. Faaij,et al.  Socio-economic impacts of future electricity generation scenarios in Europe: Potential costs and benefits of using CO2 Capture and Storage (CCS) , 2015 .

[6]  Machteld van den Broek,et al.  Operational flexibility and economics of power plants in future low-carbon power systems , 2015 .

[7]  Arnold Tukker,et al.  Global Sustainability Accounting—Developing EXIOBASE for Multi-Regional Footprint Analysis , 2014 .

[8]  Adisa Azapagic,et al.  Life cycle sustainability assessment of UK electricity scenarios to 2070 , 2014 .

[9]  R. N. Ely,et al.  Simulating the impact of new industries on the economy: The case of biorefining in Australia , 2014 .

[10]  Edgar G. Hertwich,et al.  HARMONISING NATIONAL INPUT—OUTPUT TABLES FOR CONSUMPTION-BASED ACCOUNTING — EXPERIENCES FROM EXIOPOL , 2014 .

[11]  Peter Viebahn,et al.  Prospects of carbon capture and storage (CCS) in India’s power sector – An integrated assessment , 2014 .

[12]  Ignazio Mongelli,et al.  The game of trading jobs for emissions , 2014 .

[13]  André Faaij,et al.  Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise , 2014, Climatic Change.

[14]  Pantelis Capros,et al.  European decarbonisation pathways under alternative technological and policy choices: A multi-model analysis☆ , 2014 .

[15]  Sebastiaan Deetman,et al.  The role of negative CO2 emissions for reaching 2 °C—insights from integrated assessment modelling , 2013, Climatic Change.

[16]  Peter Viebahn,et al.  Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies , 2012 .

[17]  Lora L Pinkerton,et al.  Cost and Performance Baseline for Fossil Energy Plants Volume 1a: Bituminous Coal (PC) and Natural Gas to Electricity Revision 3 , 2011 .

[18]  K. Gerdes,et al.  Quality Guidelines for Energy System Studies: Cost Estimation Methodology for NETL Assessments of Power Plant Performance , 2011 .

[19]  K. van Alphen,et al.  Accelerating the development and deployment of carbon capture and storage technologies : an innovation system perspective , 2011 .

[20]  Bart W. Terwel,et al.  Going beyond the properties of CO2 capture and storage (CCS) technology: How trust in stakeholders affects public acceptance of CCS , 2011 .

[21]  J. Keppler,et al.  Projected Costs of Generating Electricity : 2010 Edition , 2010 .

[22]  K. Lindgren,et al.  The feasibility of low CO2 concentration targets and the role of bio-energy with carbon capture and storage (BECCS) , 2010 .

[23]  Daniel M. Kammen,et al.  Putting renewables and energy efficiency to work: How many jobs can the clean energy industry generate in the US? , 2010 .

[24]  Edward S. Rubin,et al.  Effects of technological learning on future cost and performance of power plants with CO2 capture , 2009 .

[25]  C. Bullard,et al.  Impact of cap-and-trade policies for reducing greenhouse gas emissions on U.S. households , 2009 .

[26]  Todd Flach,et al.  The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors: Part 1. Scientific, technical and economic dimensions , 2009 .

[27]  Paul Upham,et al.  The acceptability of CO2 capture and storage (CCS) in Europe: An assessment of the key determining factors. Part 2. The social acceptability of CCS and the wider impacts and repercussions of its implementation , 2009 .

[28]  Filip Johnsson,et al.  Stakeholder attitudes on carbon capture and storage -- An international comparison , 2009 .

[29]  Heleen Groenenberg,et al.  Effective EU and Member State policies for stimulating CCS , 2008 .

[30]  Ralph P. Overend,et al.  Biomass for heat and power , 2002 .

[31]  The Oxford Institute for Energy Studies , 1988 .

[32]  W. Leontief Input-output economics , 1967 .

[33]  W. Leontief Quantitative Input and Output Relations in the Economic Systems of the United States , 1936 .

[34]  S. Lensink,et al.  Eindadvies basisbedragen SDE , 2017 .

[35]  Machteld van den Broek,et al.  Least-cost options for integrating intermittent renewables in low-carbon power systems , 2016 .

[36]  D. Vallentin,et al.  Prospects of Carbon Capture and Storage (CCS) in China's Power Sector , 2016 .

[37]  S. Lensink,et al.  Eindadvies basisbedragen SDE+ 2016 , 2013 .

[38]  Christina Hood,et al.  A policy strategy for carbon capture and storage , 2012 .

[39]  M. Verdonk,et al.  Referentieraming Energie en Emissies: Actualisatie 2012 Energie en emissies in de jaren 2012, 2020 en 2030 , 2012 .

[40]  R. Koelemeijer,et al.  Naar een schone economie in 2050: routes verkend. Hoe Nederland klimaatneutraal kan worden , 2011 .

[41]  C. Koopmans,et al.  Investeren in een schone toekomst: De kosten en baten van een duurzame energiehuishouding in Nederland , 2010 .

[42]  Agence pour l'Energie Nucléaire Projected Costs of Generating Electricity 2010 , 2010 .

[43]  F. Boekema,et al.  Welvaart en leefomgeving : Een scenariostudie voor Nederland in 2040 , 2007 .

[44]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .