DNA detection on plastic: surface activation protocol to convert polycarbonate substrates to biochip platforms.

A mild and efficient surface activation protocol to convert polycarbonate (PC) substrates, e.g., plastic bases of compact disks, to biochip platforms for DNA probe immobilization and target detection is described. The preparation procedure (activation, patterning, and coupling) is simple and effective; the on-chip hybridization is sensitive and selective. Particularly, UV/ozone treatment of PC sheets produces a hydrophilic surface with a high density of reactive carboxylic acid groups [(4.8 +/- 0.2) x 10-10 mol/cm2] in less than 10 min at ambient conditions, and no significant aging or physical damage to the substrate is observed. Covalent immobilization of DNA probes via both passive (reagent-less photopatterning and coupling in bulk solution phase) and flow-through (creation of microarrays with microfluidic channel plates) procedures has been demonstrated. Subsequent hybridization shows uniform and strong fluorescent signals for complementary target DNA and allows clear discrimination between fully complementary targets and strands with a single base-pair mismatch. The surface chemistry described herein will facilitate the development of disposable plastic biochips (not limited to DNA microarrays) and the fabrication of biomedical devices that are readable with conventional optical drives.