Amitsur subgroup and noncommutative motives

This paper addresses the problem of calculating the Amitsur subgroup of a proper k-scheme. Under mild hypothesis, we calculate this subgroup for proper k-varieties X with Pic(X) ≃ Z, using a classification of so called absolutely split vector bundles (AS-bundles for short). We also show that the Brauer group of X is isomorphic to Br(k) modulo the Amitsur subgroup, provided X is geometrically rational. Our results also enable us to classify AS-bundles on twisted flags. Moreover, we find an alternative proof for a result due to Merkurjev and Tignol, stating that the Amitsur subgroup of twisted flags is generated by a certain subset of the set of classes of Tits algebras of the corresponding algebraic group. This result of Merkurjev and Tignol is actually a corollary of a more general theorem that we prove. The obtained results have also consequences for the noncommutative motives of the twisted flags under consideration. In particular, we show that a certain noncommutative motive of a twisted flag is a birational invariant, generalizing in this way a result of Tabuada. We generalize this result for X having a certain type of semiorthogonal decomposition.

[1]  Altha Blanchet Function fields of generalized brauer-severi varieties , 1991 .

[2]  M. Hopkins Equivariant K-theory , 1968 .

[3]  A. Grothendieck Le groupe de Brauer : I. Algèbres d'Azumaya et interprétations diverses , 1966 .

[4]  Savsa Novakovi'c On non-existence of full exceptional collections on some relative flags , 2016, 1607.04834.

[5]  Tam'as Szamuely,et al.  Severi–Brauer varieties , 2006 .

[6]  Philippe Gille,et al.  Central Simple Algebras and Galois Cohomology , 2017 .

[7]  J. Koll'ar Severi-Brauer varieties; a geometric treatment , 2016, 1606.04368.

[8]  Savsa Novakovi'c Non-existence of exceptional collections on twisted flags and categorical representability via noncommutative motives , 2016, 1607.01043.

[9]  N. Karpenko,et al.  Rational surfaces and the canonical dimension of , 2008 .

[10]  Izzet Coskun,et al.  Surveys on Recent Developments in Algebraic Geometry , 2017 .

[11]  Asher Auel,et al.  Semiorthogonal decompositions and birational geometry of del Pezzo surfaces over arbitrary fields , 2015, 1511.07576.

[12]  Jean-Pierre Tignol,et al.  The Book of Involutions , 1998 .

[13]  I. Biswas,et al.  VECTOR BUNDLES OVER A NONDEGENERATE CONIC , 2009, Journal of the Australian Mathematical Society.

[14]  Absolutely split locally free sheaves on Brauer–Severi varieties of index two , 2012 .

[15]  I. Panin On the algebraicK-theory of twisted flag varieties , 1994 .

[16]  S. A. Amitsur GENERIC SPLITTING FIELDS OF CENTRAL SIMPLE ALGEBRAS , 1955 .

[17]  Ivan Panin,et al.  Index Reduction Formulas for Twisted Flag Varieties, II , 1996 .

[18]  C. Liedtke Morphisms to Brauer–Severi Varieties, with Applications to Del Pezzo Surfaces , 2016, 1602.07491.

[19]  Savsa Novakovi'c Absolutely split locally free sheaves on proper $k$-schemes and Brauer--Severi varieties , 2015, 1501.00859.

[20]  M. Bergh,et al.  Noncommutative motives of separable algebras , 2014, 1411.7970.

[21]  Gonçalo Tabuada Additive invariants of toric and twisted projective homogeneous varieties via noncommutative motives , 2013, 1310.4063.

[22]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[23]  Jean-Pierre Tignol,et al.  The multipliers of similitudes and the Brauer group of homogeneous varieties. , 1995 .

[24]  A. Beilinson Coherent sheaves on Pn and problems of linear algebra , 1978 .