Al, B, and Ga ion-implantation doping of SiC

Aseries of single energy Al, B, and Ga ion implants were performed in the energy range 50 keV to 4 MeV into 6H-SiC to characterize the implant depth profiles using secondary ion mass spectrometry (SIMS). From the implant depth profiles empirical formulae were developed to model the range statistics as functions of ion energy. Multiple energy implants were performed into 6H- and 4H-SiC and annealed with both AlN and graphite encapsulants to determine the ability of the encapsulants to protect the implants from out-diffusion and redistribution. Al and Ga were thermally stable, but B out-diffused even with AlN or graphite encapsulation. Electrical activation was determined by Hall and capacitance-voltage measurements. An acceptor substitutional concentration of 7×1016 cm−3 was achieved for 1×1017 cm−3 Al implantation.

[1]  M. V. Rao,et al.  Nitrogen and aluminum implantation in high resistivity silicon carbide , 1997 .

[2]  M. V. Rao,et al.  Donor ion-implantation doping into SiC , 1999 .

[3]  J. Ziegler,et al.  stopping and range of ions in solids , 1985 .

[4]  R. G. Wilson,et al.  The pearson IV distribution and its application to ion implanted depth profiles , 1980 .

[5]  T. Kimoto,et al.  Al+ and B+ implantations into 6H-SiC epilayers and application to pn junction diodes , 1998 .

[6]  S. Choopun,et al.  Pulsed laser deposition and processing of wide band gap semiconductors and related materials , 1999 .

[7]  G. Pensl,et al.  Coimplantation Effects on the Electrical Properties of Boron and Aluminium Acceptors in 4H-SiC , 1997 .

[8]  M. V. Rao,et al.  Effectiveness of AlN encapsulant in annealing ion-implanted SiC , 1999 .

[9]  M. Melloch,et al.  Activation of nitrogen implants in 6H-SiC , 1997 .

[10]  M. V. Rao,et al.  Al and B ion‐implantations in 6H‐ and 3C‐SiC , 1995 .

[11]  T. Chow,et al.  Characterization of phosphorus implantation in 4H-SiC , 1999 .

[12]  S. R. Smith,et al.  Shallow acceptor levels in 4H- and 6H-SiC , 1999 .

[13]  Ying-Chih Chang,et al.  Annealing of implantation damage and redistribution of impurities in SiC using a pulsed excimer laser , 1990 .

[14]  H. Matsunami,et al.  Aluminum and boron ion implantations into 6H-SiC epilayers , 1996 .

[15]  Thomas Frank,et al.  Doping of SiC by Implantation of Boron and Aluminum , 1997 .

[16]  M. Melloch,et al.  Surface roughening in ion implanted 4H-silicon carbide , 1999 .

[17]  N. Koeman,et al.  Concentration profiles of boron implantations in amorphous and polycrystalline silicon , 1975 .

[18]  R. Vispute,et al.  AlN as an encapsulate for annealing SiC , 1998 .

[19]  E. Wendler,et al.  Defect production and annealing in ion implanted silicon carbide , 1995 .

[20]  H. Strunk,et al.  Investigation of radiation damage in ion implanted and annealed SiC layers , 1995 .

[21]  C. Weitzel Silicon Carbide High Frequency Devices , 1997 .

[22]  M. Melloch,et al.  Dopant activation and surface morphology of ion implanted 4H- and 6H-silicon carbide , 1998 .

[23]  W. Skorupa,et al.  GALLIUM IMPLANTATION INDUCED DEEP LEVELS IN N-TYPE 6H-SIC , 1998 .

[24]  M. Behar,et al.  Range parameters of Er, Ga and F implanted into SiC films , 1994 .

[25]  T. Kimoto,et al.  Nitrogen Ion Implantation into α‐SiC Epitaxial Layers , 1997 .

[26]  W. Skorupa,et al.  Efficient p-type doping of 6H-SiC: Flash-lamp annealing after aluminum implantation , 1999 .

[27]  M. V. Rao,et al.  Phosphorus and boron implantation in 6H–SiC , 1997 .