Micro-mechanical studies on the effect of the stress triaxiality and the Lode parameter on ductile damage

Abstract The paper deals with the effect of stress state on the damage behavior of ductile metals. The continuum damage model has been generalized to take into account the effect of stress state on damage criteria as well as on evolution equations of damage strains. Different branches are considered corresponding to various damage mechanisms depending on stress intensity, stress triaxiality and the Lode parameter. Basic material parameters are identified using experiments with differently notched tension and shear specimens. To be able to get more insight in the complex damage and failure behavior additional series of three-dimensional micro-mechanical numerical analyses of void containing unit cells have been performed. These calculations cover a wide range of stress triaxialities and Lode parameters in the tension, shear and compression domains. The numerical results are used to show general trends, to develop equations for the damage criteria, to propose evolution equations of damage strains, and to identify parameters of the continuum model.

[1]  John W. Hutchinson,et al.  Calibration procedures for a computational model of ductile fracture , 2010, Engineering Fracture Mechanics.

[2]  Jinkook Kim,et al.  On ductile fracture initiation toughness: Effects of void volume fraction, void shape and void distribution , 2005 .

[3]  S. Dey,et al.  Strength and ductility of Weldox 460 E steel at high strain rates, elevated temperatures and various stress triaxialities , 2005 .

[4]  Charles Roe,et al.  A Study on the Effect of the Stress State on Ductile Fracture , 2010 .

[5]  Golam Newaz,et al.  Ductile damage evolution under triaxial state of stress: theory and experiments , 2005 .

[6]  M. Brünig Numerical analysis and elastic–plastic deformation behavior of anisotropically damaged solids , 2002 .

[7]  K. L. Nielsen,et al.  Relations between a micro-mechanical model and a damage model for ductile failure in shear , 2010 .

[8]  Michael Brünig,et al.  An anisotropic ductile damage model based on irreversible thermodynamics , 2003 .

[9]  Akhtar S. Khan,et al.  A new approach for ductile fracture prediction on Al 2024-T351 alloy , 2012 .

[10]  Michael Brünig,et al.  A ductile damage criterion at various stress triaxialities , 2008 .

[11]  T. Wierzbicki,et al.  On fracture locus in the equivalent strain and stress triaxiality space , 2004 .

[12]  S. Kweon,et al.  Damage at negative triaxiality , 2012 .

[13]  Odd Sture Hopperstad,et al.  On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part II. Numerical study , 2003 .

[14]  I. Barsoum,et al.  Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence , 2011 .

[15]  Meinhard Kuna,et al.  Three-dimensional cell model analyses of void growth in ductile materials , 1996 .

[16]  Kostas Danas,et al.  Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials , 2012 .

[17]  C. L. Chow,et al.  An anisotropic theory of continuum damage mechanics for ductile fracture , 1987 .

[18]  Imad Barsoum,et al.  Rupture mechanisms in combined tension and shear : Experiments , 2007 .

[19]  Michael Brünig,et al.  Experiments on stress-triaxiality dependence of material behavior of aluminum alloys , 2010 .

[20]  Tommaso Coppola,et al.  The effect of stress invariants on ductile fracture limit in steels , 2009 .

[21]  Jinkook Kim,et al.  Modeling of Ductile Fracture: Significance of Void Coalescence , 2006 .

[22]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[23]  F. Pires,et al.  An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality , 2012 .

[24]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[25]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[26]  J. Chaboche Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth , 1988 .

[27]  J. Chaboche Continuum Damage Mechanics: Part I—General Concepts , 1988 .

[28]  M. Brünig Numerical analysis of anisotropic ductile continuum damage , 2003 .

[29]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[30]  Thomas Pardoen,et al.  The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension , 2011 .

[31]  K. L. Nielsen,et al.  Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing , 2011 .

[32]  K. L. Nielsen,et al.  Collapse and coalescence of spherical voids subject to intense shearing: studied in full 3D , 2012, International Journal of Fracture.

[33]  Domenico Gentile,et al.  CDM modeling of ductile failure in ferritic steels: Assessment of the geometry transferability of model parameters , 2006 .

[34]  O. Richmond,et al.  The evolution of damage and fracture in iron compacts with various initial porosities , 1988 .

[35]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[36]  Jinkook Kim,et al.  Modeling of crack growth in ductile solids: a three-dimensional analysis , 2003 .

[37]  Ke-Shi Zhang,et al.  Numerical analysis of the influence of the Lode parameter on void growth , 2001 .

[38]  Development of a combined tension–torsion experiment for calibration of ductile fracture models under conditions of low triaxiality , 2012 .

[39]  J. Hutchinson,et al.  Modification of the Gurson Model for shear failure , 2008 .

[40]  T. Wierzbicki,et al.  A new model of metal plasticity and fracture with pressure and Lode dependence , 2008 .

[41]  M. Brünig,et al.  Numerical Analyses of Stress-triaxiality-dependent Inelastic Deformation Behavior of Aluminum Alloys , 2011 .

[42]  J. Hancock,et al.  On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states , 1976 .

[43]  M. Brünig,et al.  Modeling of Ductile Damage and Fracture Behavior Based on Different Micromechanisms , 2011 .

[44]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[45]  J. Leblond,et al.  Ductile Fracture by Void Growth to Coalescence , 2010 .

[46]  Xiaosheng Gao,et al.  Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy , 2009 .

[47]  L. Xue,et al.  Constitutive modeling of void shearing effect in ductile fracture of porous materials , 2008 .

[48]  David A. Surovik,et al.  On the path-dependence of the fracture locus in ductile materials - Analysis , 2012 .

[49]  Tomasz Wierzbicki,et al.  On the cut-off value of negative triaxiality for fracture , 2005 .

[50]  Dirk Mohr,et al.  On the predictive capabilities of the shear modified Gurson and the modified Mohr–Coulomb fracture models over a wide range of stress triaxialities and Lode angles , 2011 .

[51]  Yun-Jae Kim,et al.  Development of stress-modified fracture strain for ductile failure of API X65 steel , 2007 .