Numerical Investigation of Unburnt Hydrocarbon Emissions in a Homogeneous-Charge Late-Injection Diesel-Fueled Engine

[1]  Dennis N. Assanis,et al.  Speciated Hydrocarbon Emissions from an Automotive Diesel Engine and DOC Utilizing Conventional and PCI Combustion , 2006 .

[2]  Hiromichi Yanagihara,et al.  Ignition timing control at Toyota UNIBUS combustion system , 2002 .

[3]  Timothy J. Callahan,et al.  Homogeneous Charge Compression Ignition of Diesel Fuel , 1996 .

[4]  Peter J. O'Rourke,et al.  A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model , 2000 .

[5]  H. Pitsch,et al.  An efficient error-propagation-based reduction method for large chemical kinetic mechanisms , 2008 .

[6]  Masakazu Eguchi,et al.  Nissan's New Multivalve DI Diesel Engine Series , 1998 .

[7]  J. Dec,et al.  The Potential of HCCI Combustion for High Efficiency and Low Emissions , 2002 .

[8]  Yoshinaka Takeda,et al.  Emission Characteristics of Premixed Lean Diesel Combustion with Extremely Early Staged Fuel Injection , 1996 .

[9]  Rolf D. Reitz,et al.  In-Cylinder Measurement and Modeling of Liquid Fuel Spray Penetration in a Heavy-Duty Diesel Engine , 1997 .

[10]  R. Reitz,et al.  Modeling the effects of drop drag and breakup on fuel sprays. Technical paper , 1993 .

[11]  Thomas W. Ryan,et al.  Homogeneous Charge Compression Ignition (HCCI) of Diesel Fuel , 1997 .

[12]  Heinz Pitsch,et al.  Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines , 2007 .

[13]  Bengt Johansson,et al.  The Hcci Combustion Process in a Single Cycle-High-Speed Fuel Tracer Lif and Chemiluminescence Imaging , 2002 .

[14]  Martin R. Maxey,et al.  Small‐scale features of vorticity and passive scalar fields in homogeneous isotropic turbulence , 1991 .

[15]  Christopher J. Rutland,et al.  MODELING FUEL FILM FORMATION AND WALL INTERACTION IN DIESEL ENGINES , 1996 .

[16]  Naoki Shimazaki,et al.  Combustion and Emission Characteristics of Premixed Lean Diesel Combustion Engine , 1997 .

[17]  Dennis N. Assanis,et al.  LEAN AND RICH PREMIXED COMPRESSION IGNITION COMBUSTION IN A LIGHT-DUTY DIESEL ENGINE , 2005 .

[18]  A. Burcat Thermochemical Data for Combustion Calculations , 1984 .

[19]  Martin R. Maxey,et al.  The evolution of small‐scale structures in homogeneous isotropic turbulence , 1992 .

[20]  Dennis N. Assanis,et al.  Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine , 2005 .

[21]  Dennis N. Assanis,et al.  The Development of Throttled and Unthrottled PCI Combustion in a Light-Duty Diesel Engine , 2006 .

[22]  Shuji Kimura,et al.  New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines , 1999 .

[23]  Rolf D. Reitz,et al.  Comparison of the Characteristic Time (CTC), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Optical Diagnostic Data for Multi-Mode Combustion in a Heavy-Duty DI Diesel Engine , 2006 .

[24]  N. Peters,et al.  Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames , 1998 .

[25]  Bengt Johansson,et al.  The Effect of In-Cylinder Flow and Turbulence on HCCI Operation , 2002 .

[26]  H. Pitsch Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion Flames , 2000 .

[27]  C. Westbrook,et al.  A Comprehensive Modeling Study of n-Heptane Oxidation , 1998 .

[28]  Bertrand Gatellier,et al.  Development of the High Power NADI™ Concept Using Dual Mode Diesel Combustion to Achieve Zero NOx and Particulate Emissions , 2002 .