Thermal phase transition with full 2-loop effective potential

[1]  Shankha Banerjee,et al.  A revisit to scalar dark matter with radiative corrections , 2016, Journal of High Energy Physics.

[2]  Lisa Randall,et al.  What Is Dark Matter? , 2018, Nature.

[3]  V. M. Ghete,et al.  Measurement of the tt¯$$ \mathrm{t}\overline{\mathrm{t}} $$ production cross section using events with one lepton and at least one jet in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017 .

[4]  M. Hashemi,et al.  Observability of inert scalars at the LHC , 2016, 1611.07827.

[5]  A. Datta,et al.  Exploring collider signatures of the inert Higgs doublet model , 2016, 1610.00648.

[6]  P. Poulose,et al.  Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC , 2016, 1604.03045.

[7]  M. Mühlleitner,et al.  Strong first order electroweak phase transition in the CP-conserving 2HDM revisited , 2016, Journal of High Energy Physics.

[8]  A. Belyaev,et al.  Anatomy of the inert two-Higgs-doublet model in the light of the LHC and non-LHC dark matter searches , 2016, 1612.00511.

[9]  M. Ramsey-Musolf,et al.  Lepton-Flavored Electroweak Baryogenesis , 2016, 1609.09849.

[10]  A. Tranberg,et al.  Dimensional reduction of the Standard Model coupled to a new singlet scalar field , 2016, 1609.06230.

[11]  S. Kanemura,et al.  Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings , 2016, 1605.08520.

[12]  A. D. L. Puente,et al.  Compressing the Inert Doublet Model , 2015, 1510.08069.

[13]  U. Helsinki,et al.  Standard model cross-over on the lattice , 2015, 1508.07161.

[14]  A. Ibarra,et al.  Probing the inert doublet dark matter model with Cherenkov telescopes , 2015, 1512.02801.

[15]  M. Hashemi,et al.  Production of inert scalars at the high energy e+e− colliders , 2015, 1512.01175.

[16]  F. Queiroz,et al.  The CTA aims at the Inert Doublet Model , 2015, 1511.05967.

[17]  B. Koch,et al.  Constraints to Dark Matter from Inert Higgs Doublet Model , 2015, 1511.04429.

[18]  P. Ferreira,et al.  One-loop contributions to neutral minima in the inert doublet model , 2015, 1511.02879.

[19]  A. Ilnicka,et al.  Inert Doublet Model in the light of LHC and astrophysical data , 2015, 1510.04159.

[20]  Adil Jueid,et al.  Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model , 2015, 1507.03630.

[21]  T. Stefaniak,et al.  The electroweak phase transition in the Inert Doublet Model , 2015, 1504.05949.

[22]  J. Kozaczuk,et al.  Electroweak Baryogenesis from Exotic Electroweak Symmetry Breaking , 2015, 1504.05195.

[23]  S. Kraml,et al.  Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC , 2015, 1503.07367.

[24]  B. Świeżewska Inert scalars and vacuum metastability around the electroweak scale , 2015, 1503.07078.

[25]  M. Meyer,et al.  Standard Model thermodynamics across the electroweak crossover , 2015, 1503.04935.

[26]  S. Rakshit,et al.  Constraints on inert dark matter from the metastability of the electroweak vacuum , 2015, 1503.03085.

[27]  D. Majumdar,et al.  CONFRONTING GALACTIC AND EXTRAGALACTIC γ-RAYS OBSERVED BY FERMI-LAT WITH ANNIHILATING DARK MATTER IN AN INERT HIGGS DOUBLET MODEL , 2015, 1502.05682.

[28]  B. Mukhopādhyāẏa,et al.  Dark matter, neutrino masses and high scale validity of an inert Higgs doublet model , 2015, 1501.03700.

[29]  J. T. Childers,et al.  Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at s=8$$ \sqrt{s}=8 $$ TeV , 2014, 1411.6795.

[30]  K. Mimasu,et al.  Echoes of the electroweak phase transition: discovering a second Higgs doublet through A0→ZH0. , 2014, Physical review letters.

[31]  M. D’Onofrio,et al.  Sphaleron rate in the minimal standard model. , 2014, Physical review letters.

[32]  Dominik Stöckinger,et al.  Renormalization of vacuum expectation values in spontaneously broken gauge theories: two-loop results , 2013, Journal of High Energy Physics.

[33]  Y. S. Tsai,et al.  An updated analysis of Inert Higgs Doublet Model in light of the recent results from LUX, PLANCK, AMS-02 and LHC , 2013, 1310.0358.

[34]  A. Ibarra,et al.  Novel gamma-ray spectral features in the inert doublet model , 2013, 1306.4681.

[35]  Paweł Swaczyna,et al.  Constraining Inert Dark Matter by Rγγ and WMAP data , 2013, 1305.6266.

[36]  Dominik Stöckinger,et al.  Renormalization of vacuum expectation values in spontaneously broken gauge theories , 2013, 1305.1548.

[37]  Igor P. Ivanov,et al.  Metastability bounds on the two Higgs doublet model , 2013, 1303.5098.

[38]  A. Goudelis,et al.  Dark matter in the inert doublet model after the discovery of a Higgs-like boson at the LHC , 2013, 1303.3010.

[39]  K. Kainulainen,et al.  Improved Electroweak Phase Transition with Subdominant Inert Doublet Dark Matter , 2013, 1302.2614.

[40]  M. Klasen,et al.  Electroweak corrections to the direct detection cross section of inert Higgs dark matter , 2013, 1302.1657.

[41]  M. Laine,et al.  Lattice study of an electroweak phase transition at mh ≃ 126 GeV , 2012, 1211.7344.

[42]  E. Senaha,et al.  Two-loop effective potential, thermal resummation, and first-order phase transitions: Beyond the high-temperature expansion , 2012, 1210.1737.

[43]  Y. Schröder,et al.  IBP methods at finite temperature , 2012, 1207.4042.

[44]  M. Krawczyk,et al.  Inert Dark Matter and Strong Electroweak Phase Transition , 2012, 1207.0084.

[45]  M. Gustafsson,et al.  Status of the inert doublet model and the role of multileptons at the LHC , 2012, 1206.6316.

[46]  A. Arhrib,et al.  H→γγ in the inert Higgs doublet model , 2012 .

[47]  M. Garny,et al.  On the gauge dependence of vacuum transitions at finite temperature , 2012, 1205.3392.

[48]  D. Borah,et al.  Inert doublet dark matter with strong electroweak phase transition , 2012, 1204.4722.

[49]  Talal Ahmed Chowdhury,et al.  Dark matter as the trigger of strong electroweak phase transition , 2011, 1110.5334.

[50]  L. Lopez-Honorez,et al.  A new viable region of the inert doublet model , 2010, 1011.1411.

[51]  I. Ginzburg,et al.  Evolution of the Universe to the present inert phase , 2010, 1009.4593.

[52]  Carlos E. Yaguna,et al.  The inert doublet model of dark matter revisited , 2010, 1003.3125.

[53]  S. Su,et al.  Trilepton Signals in the Inert Doublet Model , 2010, 1005.0090.

[54]  F. Ling,et al.  IDM & iDM or the inert doublet model and inelastic dark matter , 2009, 0907.0430.

[55]  S. Su,et al.  Inert dark matter , 2009, 0906.1609.

[56]  E. Tassi,et al.  Measurement of J/psi helicity distributions in inelastic photoproduction at HERA , 2009 .

[57]  F. Ling,et al.  Scalar multiplet dark matter , 2009, 0903.4010.

[58]  M. Tytgat,et al.  Neutrinos from Inert Doublet dark matter , 2009, 0901.1750.

[59]  P. Agrawal,et al.  Signals of inert doublet dark matter in neutrino telescopes , 2008, 0811.1798.

[60]  J. Edsjo,et al.  Inert Doublet Model and LEP II Limits , 2008, 0810.3924.

[61]  M. Tytgat,et al.  Electroweak symmetry breaking induced by dark matter , 2007, 0707.0633.

[62]  L. Bergström,et al.  Significant gamma lines from inert Higgs dark matter. , 2007, Physical review letters.

[63]  M. Tytgat,et al.  The inert doublet model: an archetype for dark matter , 2006, hep-ph/0612275.

[64]  L. Hall,et al.  Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics , 2006, hep-ph/0603188.

[65]  E. Ma Verifiable radiative seesaw mechanism of neutrino mass and dark matter , 2006, hep-ph/0601225.

[66]  M. Laine,et al.  Two Higgs doublet dynamics at the electroweak phase transition: a non-perturbative study , 2000, hep-lat/0009025.

[67]  K. Rummukainen,et al.  Electroweak bubble nucleation, nonperturbatively , 2000, hep-ph/0009132.

[68]  M. Strickland,et al.  Screened perturbation theory to three loops , 2000, hep-ph/0007159.

[69]  M. Losada,et al.  TWO-LOOP DIMENSIONAL REDUCTION AND EFFECTIVE POTENTIAL WITHOUT TEMPERATURE EXPANSIONS , 2000, hep-ph/0003111.

[70]  M. Laine,et al.  What's new with the electroweak phase transition?☆ , 1998, hep-lat/9809045.

[71]  H. Czyz,et al.  The Master differential equations for the two loop sunrise selfmass amplitudes , 1998, hep-th/9805118.

[72]  T. Hatsuda,et al.  Optimized perturbation theory at finite temperature , 1998, hep-ph/9803226.

[73]  D.R.T. Jones,et al.  The Standard model effective potential at two loops , 1997, hep-ph/0111190.

[74]  P. Petreczky,et al.  Screened Perturbation Theory , 1997, hep-ph/9702376.

[75]  M. Shaposhnikov,et al.  Generic rules for high temperature dimensional reduction and their application to the Standard Model , 1996 .

[76]  J. Kripfganz,et al.  The high-temperature two-loop effective potential of the electroweak theory in a general 't Hooft background gauge , 1995, hep-ph/9501317.

[77]  Laine Gauge dependence of the high-temperature two-loop effective potential for the Higgs field. , 1994, Physical review. D, Particles and fields.

[78]  Arnold,et al.  Three-loop free energy for high-temperature QED and QCD with fermions. , 1994, Physical review. D, Particles and fields.

[79]  Arnold,et al.  Erratum: Effective potential and first-order phase transitions: Beyond leading order , 1994, Physical review. D, Particles and fields.

[80]  Arnold,et al.  Three-loop free energy for pure gauge QCD. , 1994, Physical review. D, Particles and fields.

[81]  Z. Fodor,et al.  Gauge Invariant Treatment of the Electroweak Phase Transition , 1994, hep-ph/9403391.

[82]  J. Kripfganz,et al.  Baryon asymmetry from a two stage electroweak phase transition? , 1994, hep-ph/9404272.

[83]  Parwani Erratum: Resummation in a hot scalar field theory , 1993, Physical review. D, Particles and fields.

[84]  W. Buchmüller,et al.  First-order phase transitions in scalar electrodynamics , 1993 .

[85]  J. B. Tausk,et al.  Two-loop self-energy diagrams with different masses and the momentum expansion , 1993 .

[86]  Arnold,et al.  Effective potential and first-order phase transitions: Beyond leading order. , 1992, Physical review. D, Particles and fields.

[87]  D. Land,et al.  Two stage phase transition in two Higgs models , 1992, hep-ph/9208227.

[88]  Carrington Effective potential at finite temperature in the standard model. , 1992, Physical review. D, Particles and fields.

[89]  Parwani Resummation in a hot scalar field theory. , 1992, Physical review. D, Particles and fields.

[90]  Leigh,et al.  Towards the theory of the electroweak phase transition. , 1992, Physical review. D, Particles and fields.

[91]  M. Shaposhnikov Baryon Asymmetry of the Universe in Standard Electroweak Theory , 1987 .

[92]  T. Appelquist,et al.  High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics , 1981 .

[93]  P. Ginsparg First and second order phase transitions in gauge theories at finite temperature , 1980 .

[94]  A. Sirlin Radiative Corrections in the SU(2)L×U(1) Theory a , 1980 .

[95]  Ernest Ma,et al.  Pattern of Symmetry Breaking with Two Higgs Doublets , 1978 .